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A methodology for pharmacophore fingerprinting (PharmPrint), previously described in the context of QSAR,
has been used to address the issues involved in primary library design. A subset of the MDDR (MDDR9104)
has been used to define a reference set of bioactive molecules. A statistic has been devised to measure the
discriminating power of molecular descriptors using the target class assignments for this set, for which the
PharmPrint fingerprint outperformed other descriptors. A principal components analysis (PCA) of the
fingerprints for the MDDR9104 produces a low dimensional representation within which molecular properties
and other libraries can be visualized and explored. PCA calculations on subsets of classes show that this
space is robust to the addition of new classes, suggesting that pharmacophoric space is finite and rapidly
converging. We demonstrate the application of the PharmPrint methodology to the analysis and design of
virtual combinatorial libraries using common scaffolds and building blocks.

INTRODUCTION

Recent advances in combinatorial chemistry and high
throughput screening have generated interest in analyzing
calculated properties of large collections of compounds.1-7

In the field of drug design, two broad applications can be
identified: (i) design of targeted (or focused) libraries, where
the main activity is prediction of binding to a particular
protein target (enzyme or receptor), and (ii) design of
exploratory primary libraries, to be screened across a number
of targets that may be structurally unrelated. In addition there
may be an intermediate case, where compounds are to be
screened against a family of structurally related targets.

Targeted library design is essentially an extension of the
areas of computational chemistry and molecular modeling
which utilize quantitative structure-activity relationships
(QSAR) for scaffold design and building block selection.
This involves calculating molecular descriptors, using them
in a model to predict biological activity, and selecting
building blocks to maximize a library’s performance against
the target of interest. We have previously reported on the
development of the pharmacophore fingerprinting methodol-
ogy named PharmPrint.8 It has been applied to some
examples of activity prediction for a single target, generating
QSARs for estrogen receptor ligands. The results were shown
to be superior to previous methods applied to the same data.
However, the versatile and information-rich nature of this
descriptor means that it is also useful in addressing the issues
of primary design, to which we now turn.

The goal with primary library design is to generate active
compounds for one or more targets when there is little or
nothing known about the protein structures or their ligands.
In addition there may be the desire to optimize early in the
design process other drug properties not related to binding
such as absorption, distribution, metabolism, excretion
(ADME), and toxicity.

A starting point for this kind of analysis is the calculation
of descriptors to characterize molecular structures. Many

kinds of descriptors have been used.9-13 They can be broadly
classified according to how they treat molecular structures.
Many descriptors can be calculated from a molecule con-
nection table that specifies the atom types and their con-
nectivity (1D/2D). Examples are molecular weight, calculated
logP (clogP), and descriptors that contain information about
chemical functionality (e.g., H-bonding groups). A widely
accepted rule of 5 has been established using such properties
to define the requirements for molecules to be successful as
drugs.14 Calculation of 3D properties involves generating an
energetically reasonable 3D structure. In addition, some
methods incorporate a treatment of multiple conformations.
Sometimes descriptors are chosen based on features observed
to be important in ligand binding, or descriptors are used
which have been shown to correlate with desirable properties.
Other times many descriptors are calculated and statistical
methods are used to establish a minimal set that is important.

The pharmacophore concept is widely used in the field of
computer aided drug design.15-17 It is based on the kinds of
interactions observed to be important in ligand-protein
interactions: hydrogen bonding, charge, and hydrophobic
interactions. A pharmacophore is a set of functional group
types in a particular spatial arrangement; traditionally the
goal has been to find one, or a small number, that represent
the interactions made in common by a set of small molecule
ligands with a protein receptor. Pharmacophore fingerprinting
extends this concept by constructing a basis set of pharma-
cophores by enumerating a set of pharmacophoric types with
a set of distance ranges, and determining which ones are
present in a molecule.8,18-24 The PharmPrint methodology
has been developed at Affymax to fingerprint large libraries
of compounds. The PharmPrint binary bitstring is a compact
but information-rich descriptor, containing information about
3D molecular structure and multiple conformations.

There are several desirable properties that a calculated
molecular descriptor should have. Ideally a descriptor should
allow for a quantitative measure of molecular similarity. A
calculated molecular descriptor has better utility if it cor-
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relates with an experimentally measurable property. Clearly
a calculated logP should correlate as closely as possible with
the measured value. In drug design an important property is
binding to a protein target. Although this can be calculated
explicitly (e.g., with docking calculations, if the structure of
the target is available) usually it is done as a function of
more easily calculated properties which are regarded as
independent variables. It would be expected that descriptors
that contain conformational information would be more
predictive of biological activity than ones that do not, and
that 3D descriptors would be better than 1D/2D descriptors.
However this has been difficult to demonstrate, and some-
times 2D descriptors actually outperform 3D ones.10,11

It is assumed that the goals of primary library design will
be achieved by a collection of compounds that have a
property distribution which is close to that of all compounds
demonstrating some level of biological activity. We have
used the PharmPrints of compounds from the MDDR to
define the properties of bioactive molecules, and we have
used these results in the design of combinatorial libraries
that have optimum property distributions. Thus we make a
conceptual distinction between chemical space and bioactive
space, and between maximizing molecular diversity and
optimum coverage of bioactive space.

METHODOLOGY

Fingerprint Generation. The methodology used was the
same as that described previously.8 Briefly, a basis set of
3-point pharmacophores was constructed by enumerating 7
pharmacophoric types and 6 distance ranges. The types are:
H-bond acceptor (A) and donor (D), formal negative (N)
and positive (P) charges, hydrophobic (H), aromatic (R), and
a default type (X) for any atom that is not labeled with any
of the first six types. The distance ranges are: 2.0-4.5, 4.5-
7.0, 7.0-10.0, 10.0-14.0, 14.0-19.0, and 19.0-24.0 Å. The
pharmacophores are filtered to eliminate duplicates related
by symmetry, and ones that violate the triangle rule, resulting
in a basis set of size 10 549. The PharmPrint program was
developed in-house to rapidly fingerprint large numbers of
compounds. It takes as input a single 3D molecular structure
generated by the Corina program,25,26 assigns the pharma-
cophoric types to atoms, rotates about bonds to generate
multiple conformations, and builds the fingerprint by mea-
suring distances between pharmacophoric groups. The output
is a binary bitstring containing information about the
pharmacophores presented by the molecule. The program
can run in batch mode accepting MDL SD files as input and
providing fingerprints for each structure as output.

Preparation of the MDDR9104 Subset.The MDDR
(MDL Drug Data Report)27 was used as a reference for
bioactive molecules. A subset of the total 92 604 entries in
version 98.1 was prepared as described previously.8 Struc-
tures were extracted according to the assigned activity class,
where the class indicates a single protein target (as opposed
to a general therapeutic area). Molecules were further filtered
based on molecular weight range (200-700) and atom type
content (only C, N, O, H, S, P, F, Cl, Br, and I allowed),
and a measure of 2D similarity (MDL 166 keys) was applied
to eliminate close analogues. This procedure resulted in 9104
compounds in 152 classes. A compound may belong to more
than one class; however only 1083 (11.9%) do so.

Principal Components Analysis (PCA).PCA was per-
formed on the MDDR9104 set to produce a low dimensional
space suitable for visualization. The bits in the fingerprint
were converted to the real numbers 0.0 and 1.0 for the
calculation. The NIPALS algorithm was used, which calcu-
lates one component at a time.28 The data were mean centered
but not variance scaled. Figure 1 illustrates the process
whereby the data matrixX (fingerprints) is broken down into
the scores matrixT (new coordinates in reduced dimensional
space) and loadings matrixP, which can be applied to any
new fingerprints to transform them to the new space. The
variance accounted for by the addition of each component
is included in the rightmost column of Table 1.

Molecular Similarity. It is important that molecules which
are judged to be similar according to a calculated property
are similar in biological activity. The following method was
established as a measure of the discriminating power of a
molecular descriptor, using any data set that is classified into
activity classes, such as the MDDR9104 set. (Previous
analyses of this kind have usually used one target at a time.13)
If all the (n2 - n)/2 pairwise intermolecular comparisons
are made, then these can be divided into two types:
comparisons made within classes and those made between
classes. (For compounds belonging to several classes, if a

Figure 1. Reducing PharmPrint dimensionality: the principal
component transformation illustrated in matrix form.X is the data
matrix (fingerprints),T is the scores matrix (coordinates in low
dimensional space), andP is loadings matrix, which defines the
transformation between them.

Table 1. t′ Statistic Using Class Assignments in the MDDR9104
Set and Various Molecular Descriptors

mol. wt.: t′ ) 321.3
MDL 166 keys Tanimoto: t′ ) 301.8
PharmPrint Tanimoto: t′ ) 455.8

MSI50/PCA PharmPrint/PCA

dim. t′ %var t′ %var

1 330.1 63.5 306.0 22.9
1-2 344.5 72.8 403.2 30.2
1-3 359.7 79.1 445.1 35.4
1-4 351.1 84.8 455.2 39.2
1-5 372.1 88.9 442.1 42.6
1-6 365.9 92.0 434.9 45.2
1-7 369.9 94.0 434.6 47.0
1-8 371.7 95.8 440.3 48.6
1-9 374.0 96.8 440.9 49.9

1-10 374.9 97.6 441.9 51.0
1-11 374.9 98.1 442.7 52.0
1-12 375.7 98.5 446.3 53.0
1-13 375.3 98.9 447.2 53.8
1-14 374.8 99.2 446.8 54.5
1-15 374.7 99.4 447.9 55.2
1-16 374.6 99.5 448.4 55.8
1-17 374.6 99.6 448.7 56.4
1-18 374.6 99.7 447.8 56.9
1-19 374.6 99.7 448.1 57.5
1-20 374.7 99.8 447.3 57.9
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pair share at least one class, they are regarded as being in
the same class.) Compounds in the same class are assumed
on average to be more similar in biological activity than ones
in different classes (although this is not strictly implied in
the data, i.e., it is not the case that every compound has been
tested against every target). This produces two distributions
of molecular similarities. The difference in the means of the
distributions can be expressed in units of standard error by
the formula

where for samples 1 and 2,Xh is the mean,s2 is the variance,
andn is the sample size. For small samples this follows the
Studentt distribution; for large samples it goes toward a
normal distribution. This statistic is sometimes used as a test
of significance for the difference between two distributions.
With the results presented here the statistic is always highly
significant, so the absolute value of the statistic is presented;
the larger the absolute value the better. It can be calculated
for any data set that is assigned to classes, and for any
measure of similarity.

MDDR9104 Coverage of Bioactive Space.This set was
designed to be as representative as possible of bioactive
molecules in general, given current data. A test was devised
to investigate whether the space produced by the PCA
calculation on the MDDR9104 set is a true universal space,
or if it is highly dependent on the content of the database at
any point in time. Thus PCA calculations were done on
randomly selected subsets of the 152 classes. Growing
subsets of compounds which belong to 19, 38, 57, 76, 95,
114, and 133 classes were created, where the larger sets are
supersets of the smaller sets. This simulates the situation
where over time new targets are discovered, whose active
compounds are added to the MDDR database. The PCA
transformation is defined by the loadings matrixP (Figure
1). A comparison of theP matrix was made for each subset
with the preceding smaller subset and reported as a root-
mean-square value (referred to as∆P), for the first four PCA
dimensions. For example, a PCA was performed on the
compound set from 19 randomly selected classes. Another
19 were added and the PCA calculation was repeated. The
∆P(19,38) value was calculated between them. Another 19
classes were added and the∆P(38,57) calculated, and the
process repeated until the full set with 152 classes was
reached. The whole process was repeated 20 times with
different random number seeds. A low∆P value as classes

are added, especially in the later stages of the calculation,
would indicate that adding further classes in the future will
not substantially change the nature of this space.

Scaffolds and Building Blocks for Combinatorial Li-
brary Analysis. Eight scaffolds were used, illustrated in
Figure 2. They have been chosen to be a diverse set of
commonly used scaffolds. They have all been reported in
the literature and/or used in our laboratories. Each one has
3 positions of diversity, and were enumerated with the same
set of 20 surrogate building blocks in all positions, to give
libraries of 8000 molecules each. This simplifies the com-
parison between them. The building blocks are based on the
side chains of the 20 coded amino acids (the exception was
proline, for which we substituted cyclopentyl glycine). In
reality the building blocks would be chosen for each scaffold
based on synthetic feasibility and availability, and would be
of different chemical classes, e.g., amines and aldehydes.
However we would expect that most of these building blocks
would be available with the same or equivalent functionality.
For example, if amine building blocks are required, then
phenylalanine would be represented by the available reagent
benzylamine. The amino acid side chains are chemically
diverse, biologically relevant, and easy to report using the
one letter code.

Building Block Selection. A methodology was imple-
mented to select subsets of building blocks to optimize a
function. The selection is done for each position in each
scaffold; i.e., a subset out of a total of 480 (20 building blocks
in 3 positions for 8 scaffolds). Initially 50% (240) of the
building blocks were randomly selected. A combinatorial
constraint was implemented such that all selected building
blocks were enumerated for each scaffold, giving a subset
of approximately 8000 selected molecules out of the fully
enumerated 64 000.

The algorithm proceeds as follows. Starting from a random
selection of building blocks the function is calculated on the
enumerated products. Then a randomly selected building
block from the included set is excluded, and a randomly
selected building block from the excluded set is included,
and the function is reevaluated. A Metropolis (probability)
function is used to decide if the step is accepted or rejected,
and the method proceeds iteratively until no further improve-
ment is possible.

Two functions were explored. The first function was an
overlap between the compound subset and the MDDR9104
compounds in components 1-3 of the MDDR9104/PCA
space, referred to as the overlap function. Maximizing this

Figure 2. The eight combinatorial scaffolds analyzed in this study.

t′ ) (Xh1 - Xh2)/x(s1
2/n1 + s2

2/n2)
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function optimizes the distribution of the enumerated com-
pounds to most closely resemble that of the MDDR9104.
The coordinate space resulting from the PCA calculation on
the MDDR9104 set was divided into cubic cells of size 2.0
units in 3 dimensions. Counts of the number of points with
coordinates in each cell were made and scaled according to
library size. Then a measure of the overlap of the distribu-
tions was made as follows:

where N1) total number in set 1, N2) total number in set
2, n1i ) number from set 1 in celli, andn2i ) number from
set 2 in celli.

The second function explored was the maxmin function
which sums, for each molecule, the distance to its nearest

Figure 3. The eight largest target classes in the MDDR9104 set, color coded, shown using principal components 1-2 (a, top) and 2-3
(b, bottom).

overlap) ∑
i

{n1i + n2i - abs(n1i - n2i)}/(N1 + N2)×
100.0
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neighbor. When maximized, this produces a set which
spreads points as far apart as possible in the accessible space.

RESULTS AND DISCUSSION

Molecular Similarity. The first property explored was the
ability of the PharmPrint fingerprint to act as a measure of
molecular similarity, as judged by the class assignments in
the MDDR9104 set. Thet′ statistic (as defined in the

Methodology Section) for the MDDR9104 set is presented
in Table 1 for different molecular descriptors. The MDL 166
sskeys are used as an example of a 2D fingerprint, the
Tanimoto coefficient29 being used to compare them. The
statistic is also calculated using the difference in molecular
weight as a measure of molecular similarity. Molecular
weight was regarded as a 1D descriptor that is generally
descriptive of molecules, but we did not expect it to be highly

Figure 4. Principal components 1 and 2 of the MDDR9104 set, color coded according to (a, top) number of pharmacophores in the
molecule, and (b, bottom) content of formal charges.
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predictive. However, molecular weight, witht′ ) 321.3,
actually outperforms the MDL keys at 301.8. Both of these
are outperformed by the PharmPrint/Tanimoto result at 455.8.
Results are also presented for a PCA analysis of two
descriptor sets: MSI50 and PharmPrint. The MSI50 are 50
default descriptors in the software package Cerius2 from
MSI.30 These descriptors vary in type; some are calculated
on a single 3D structure, but none are calculated using
multiple conformations. The set is typical of that used in
many QSAR applications. The measure of similarity is the
Euclidean distance calculated in up to 20 dimensions. The
MSI50 result is a maximum of 375.7 for dimensions 1-12,
though it is 372.1 for 1-5. The PharmPrint result reaches a
maximum of 455.2 using the first four principal components,
and with more components the value declines. Thus these
data give the expected, but often difficult to demonstrate,
result that 3D conformationally flexible descriptors outper-
form 3D one-conformer descriptors, which in turn outperform
2D descriptors. It also shows that the PharmPrint/PCA result
is comparable to the PharmPrint/Tanimoto result. This
implies that molecules can be meaningfully considered in a
low dimensional space derived from fingerprints, which
simplifies certain calculations and aids in visualization on
paper, in 2D, and on the computer graphics in 3D.

PCA. Figures 3 and 4 show the results of a PCA
calculation of the MDDR9104 set. The plots are the
coordinates in the T matrix of Figure 1, and each compound
appears as a single point. In the first two components the
distribution is wedge shaped, and some regions appear to
be more densely populated than others. The eight largest
activity classes in the MDDR9104 set are shown color coded
in Figure 3(a) for components 1 and 2, and in Figure 3(b)
for components 2 and 3. This gives a qualitative and visual
representation of the separation of activity classes as
calculated by thet′ statistic above.

A question that immediately arises is how do the individual
pharmacophores contribute to each principal component.
Figure 4(a) shows the complete MDDR9104 set (components
1 and 2) color coded according to the number of bits set in
the fingerprint (i.e., number of pharmacophores hit by the
molecule). A high count indicates large, flexible, highly
functionalized molecules. This shows a strong separation in
the first principal component with the bit counts increasing
from left to right. Figure 4(b) shows the same plot color
coded according to the presence of formal charges in the
structures. This shows a separation in the second principal
component, where compounds with only positive charges
tend to have positive coordinates (top of plot); ones with
only negative charges tend to have negative coordinates
(bottom of plot); compounds which have both or neither are
between these two (cluster toward the origin). When
components 3 and 4 are viewed on a 3D computer graphics
screen and colored appropriately, trends can also be seen in
counts of H-bond, aromatic, and hydrophobic groups (data
not shown), though these are not so clear-cut as bit count
and charge.

The results of the∆P calculation (as described in the
Methodology Section) are shown in Figure 5. The value is
an RMS of the first four principal components. There is a
pronounced downward trend that approaches the baseline
when the later sets of classes are added. This indicates that
we may have reached the point where adding further classes

in the future will not significantly change the nature of this
space. This may be because the general features of the protein
binding sites are well sampled by this set of 152 classes and
9104 ligands, at least within the PharmPrint description. (It
is possible that with a more detailed description of molecules,
e.g., 4-point pharmacophores, more sampling would be
needed.)

Analysis of Combinatorial Libraries. Table 2 shows the
overlap of the fully enumerated libraries with one another
and with the MDDR9104 in PCA space (dimensions 1-3).
Overlap with the MDDR9104 can be interpreted as a measure
of the biological activity potential of the library. It can be
seen that there is considerable variation, with the first four
scaffolds overlapping in the region of 20-30%, whereas the
last four have values less than 10. This would be an initial
indication that these low scoring scaffolds are not good
candidates for primary libraries, but better used in more
specialized applications. The overlap between libraries can
be interpreted as a measure of similarity. Once again there
is a fair variation, and examination of these values can be
made with reference to the scaffolds in Figure 2.

With the building block selection simulation, 10 indepen-
dent runs were performed with different random number
seeds for the two scoring functions, and the results are
presented in Table 3 as mean and standard deviation for the
10 values. For optimization of the overlap function with
MDDDR9104, the initial (random) overlap was 29.7(2.0)%
and the optimized value was 52.6(0.3)%. As a point of
reference, if the MDDR9104 set is split into two equal halves,
the overlap between them is 68.1%, so it is difficult to
approach 100%. Table 3 gives some general statistics for
the initial and final combinatorial sets, and for the MD-
DR9104, including descriptors that were not part of the
optimization calculation (molecular weight, clogP31). In
addition two other reference sets, derived from MDL
databases,27 are included for comparison: (i) CMC (filters:
mol.wt. 150 to 750, atom type filter as for MDDR, salts
removed), (ii) ACD (filters: mol.wt. 1 to 1000, salts

Figure 5. Results of the∆P calculation (see text).

Table 2. Overlap of Fully Enumerated Libraries with Each Other
and with the MDDR9104 Set

MDDR Lib1 Lib2 Lib3 Lib4 Lib5 Lib6 Lib7 Lib8

MDDR 100 30 22 29 31 7 8 7 8
Lib1 100 39 44 34 9 12 10 14
Lib2 100 32 18 18 18 22 23
Lib3 100 54 5 15 9 11
Lib4 100 2 6 4 5
Lib5 100 14 37 52
Lib6 100 13 19
Lib7 100 40
Lib8 100
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removed). The initial library subsets have several values close
to that of the reference sets; the greatest discrepancies are
an overabundance of H-bond donors, a relative lack of
hydrophobic and aromatic groups, and clogP values that are
somewhat low. In general the results of the overlap optimi-
zation bring the statistics closer to the MDDR9104 set than
the optimization of the maxmin function, including descrip-
tors that were not explicitly part of the simulation (e.g.,
clogP).

Table 4 shows the counts of the frequency of occurrence
of the scaffolds and building blocks in the optimized libraries.
The relatively small standard deviations indicate that the
results are reproducible. With the libraries that have been
optimized for overlap with the MDDR9104, the first four
scaffolds have a much greater frequency than the last four,
in agreement with the overlap of the completely enumerated
libraries. The building block frequencies show a pronounced
preference for hydrophobic and aromatic side chains, and a
trend against charged and polar side chains. With the libraries
optimized for the maxmin function, the scaffold and building
block frequencies follow some of the same trends, but tend
to favor the larger molecules in preference to the smaller
ones.

One method for identifying holes in such a property space
was carried out as follows. For each cubic cell, a count was
made of the number of MDDR compounds in cells that are
devoid of library compounds. With the overlap-optimized
subset the cell with the highest number had 44 such
compounds, some of which are illustrated in Figure 6. It can
be seen that these are generally neutral molecules with
aromatic rings and H-bond acceptors but no H-bond donors.
Visual inspection of the scaffolds shows that all except one
(the amide scaffold #4) have at least one donor. Inspection
of the building blocks shows that there are no neutral side
chains that have acceptors but not donors. Therefore the
origin of this lack of coverage can be easily appreciated,
but was not self-evident at the start. New scaffolds and/or
side chains can then be incorporated into the analysis to
overcome this deficiency.

These results validate the MDDR9104/PCA space as being
useful for optimization of general properties of combinatorial

libraries, and also for identifying deficiencies in them. Thus
the 20 amino acid side chains, when fully enumerated, may
not be an optimum choice for ligand design, as they produce
a somewhat skewed distribution when compared to known
bioactive compounds. We can think of two possible reasons

Table 3. Statistics for Compound Setsa

librariesb

final subset databases

initial subset overlap maxmin MDDR9104 CMC ACD

overlap 29.7 (2.0) 52.6 (0.3) 26.4 (0.7) 100.0 57.9 48.0
compounds 7990 (286) 7992 (285) 7974 (287) 9104 6647 213968
MW 363 (85) 350 (87) 388 (74) 388 (104) 342 (111) 252 (122)
clogP -0.22 (2.27) 1.80 (1.80) 0.11 (2.45) 3.7 (2.3) 2.6 (2.7) 2.4 (2.8)
atoms 25.4 (6.3) 24.5 (6.5) 27.3 (5.59) 27.4 (7.4) 23.7 (7.7) 20.4 (9.1)
bits 899 (622) 806 (633) 1137 (654) 790 (670) 529 (551) 317 (492)
rotbonds 9.43 (4.03) 7.83 (3.88) 9.79 (4.01) 6.74 (4.58) 5.43 (4.19) 4.76 (4.90)
X 13.82 (3.50) 13.71 (3.69) 15.09 (3.31) 13.68 (4.88) 11.88 (5.45) 9.33 (5.41)
A 4.31 (2.18) 3.58 (1.97) 4.38 (2.22) 3.49 (2.08) 3.44 (2.45) 2.97 (2.41)
D 3.69 (1.79) 2.77 (1.47) 3.67 (1.72) 1.57 (1.25) 1.66 (1.57) 1.01 (1.36)
H 3.83 (3.16) 4.65 (3.10) 4.16 (3.11) 8.80 (5.22) 6.96 (5.10) 7.13 (6.04)
N 0.30 (0.52) 0.28 (0.50) 0.41 (0.59) 0.24 (0.55) 0.23 (0.61) 0.17 (0.51)
P 0.58 (0.70) 0.37 (0.55) 0.70 (0.72) 0.42 (0.58) 0.52 (0.67) 0.13 (0.41)
R 0.70 (0.76) 0.97 (0.81) 0.98 (0.81) 1.76 (0.95) 1.24 (0.93) 1.32 (1.11)

a Mean and standard deviation for overlap function with MDDR9104 (see text), number of compounds, molecular weight, clogP, number of
heavy atoms, number of bits (pharmacophores) in the fingerprint, number of rotatable bonds, and the number of atoms per molecule assigned to the
pharmacophore types.b Results calculated for 10 simulations.

Table 4. Frequency of Occurrence of (i) Scaffolds and (ii) Building
Blocks in the Library Subsets Optimized for the Overlap and the
Maxmin Functionsa

(i) scaffolds

function

scaffold overlap maxmin

1 1911 (157) 1455 (113)
2 1244 (139) 1694 (111)
3 1709 (217) 896 (168)
4 1444 (158) 463 (65)
5 463 (91) 1091 (114)
6 687 (75) 1389 (133)
7 219 (56) 302 (70)
8 313 (69) 684 (108)

(ii) building blocks

function

type description overlap maxmin

D charged 360 (129) 678 (101)
E charged 258 (132) 662 (96)
H charged 420 (92) 511 (130)
K charged 124 (90) 539 (123)
R charged 69 (53) 470 (135)
Q polar 198 (123) 355 (125)
N polar 191 (104) 188 (147)
C polar 334 (89) 241 (103)
S polar 149 (116) 144 (115)
T polar 155 (119) 79 (100)
A small neutral 514 (121) 247 (142)
G small neutral 365 (140) 184 (90)
Y aromatic polar 580 (150) 697 (64)
W aromatic polar 486 (116) 756 (66)
F aromatic hydrophobic 776 (70) 735 (88)
L aliphatic hydrophobic 678 (101) 208 (123)
M aliphatic hydrophobic 700 (100) 505 (158)
(P) aliphatic hydrophobic 549 (129) 198 (119)
I aliphatic hydrophobic 610 (109) 298 (164)
V aliphatic hydrophobic 476 (121) 279 (13)

a Mean and standard deviation for 10 simulations.
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for this. First, protein binding sites have a tendency to be
hydrophobic, with hydrophilic residues being reserved for
the protein exterior. Second, ligands need to be complemen-
tary to the amino acids they interact with, not mimicking
them, e.g., if proteins contain more H-bond donors, then
ligands should contain more acceptors.

CONCLUSIONS

We have explored the issues involved in primary library
design using the newly developed PharmPrint methodology.
First, we have shown that as a descriptor the PharmPrint
fingerprint has superior ability to discriminate between
compound classes as defined by binding to a protein target.

We have assumed that a desirable property of a primary
library is that it should have property distributions close to
that of known bioactive compounds. (It should be pointed
out that reproducing general property distributions does not
imply that the same “me-too” compounds are being gener-
ated.) The disadvantage of this approach is that if the
reference set is not truly representative of all desirable
compounds, then the types of compounds that are not already
represented may be overlooked. While it may be argued that
there are types of drug targets which are biologically
attractive but underrepresented in the database, we have
shown that the reduced dimensionality space from the
PharmPrint/PCA calculation is relatively stable to the addi-
tion of new classes. However, we recognize that receptors
which interact with protein ligands or with other receptors,
which have so far defied traditional drug design efforts, may
lie outside a property space defined by existing targets.
Therefore the space defined by the MDDR/PharmPrints
should be considered valid only for targets that can bind to
small molecule ligands. The problem of mimicking macro-

molecular ligands may be best addressed in its own right as
a structure-based design problem.

A goal generally considered desirable in primary library
design is optimization of a measure of molecular diversity,
here implemented by the maxmin function. Disadvantages
of this approach are that it is prone to emphasize outliers,
and it does not correct biases in property distributions
arbitrarily imposed by initial selection of scaffolds or building
blocks. In practice a prudent approach might be to optimize
both types of functions at the same time.

These results also emphasize the need to consider libraries
in a space that plotsmoleculesas opposed topharmaco-
phores. A molecule is a collection of pharmacophores,
usually several hundred of them in the PharmPrint finger-
print, and it is the particular combination of them (presence
of some and absence of others) that defines the molecular
properties. It is possible to have a library that contains all
possible pharmacophores (100% coverage of “pharmaco-
phore space”) yet does not contain important classes of
molecules (e.g., molecules that have an absence of a
particular pharmacophoric type). Inspection of the pharma-
cophores not hit by the libraries or reference sets shows that
they generally contain features uncommon or unlikely to be
important in bioactive molecules, e.g., the largest distance
ranges, or the two charge groups within the smallest distance
bin (data not shown).

We are in the process of validating these results by the
screening of large primary combinatorial libraries against
many targets of different kinds (enzymes, receptors, so-called
hard targets mentioned above). The mapping of pharma-
cophoric space will become increasingly important with the
proliferation of new targets expected from the field of
genomics, where initially there will be little structural or
functional data available. Understanding and perhaps infer-

Figure 6. A sample of molecules from the MDDR9104 that occupy a region of PCA space not covered by the combinatorial libraries.
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ring regions of ligand pharmacophore space from a domain
of biologically relevant targets will be an important step in
the pursuit of bioactive molecules.
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