Using Receptor-Site and Protein Structural Similarity to Generate New Matter Ideas

Steven Muskal, Ph.D.

Chief Executive Officer Eidogen-Sertanty, Inc.

smuskal@eidogen-sertanty.com

Motivation

- From: Individual biological target \rightarrow "Selective" compounds
- To: Target combinations \rightarrow Multi-target compound (combinations)
- >Opportunity Space:
 - Chemically tractable target combinations
 - Structural bioinformatics → first order assessment of likely selectivity and promiscuity with a protein family

Protein Structure Growth Continues

> 50K Structures/co-complexes (Apr-2008)

> 600 deposits per month → >150/week!

PDB Growth source: rcsb.org

Year

Drugs Developed using Structural Knowledge

Inhibitor/Drug	Disease	Company(s)	Protein targeted	Enzyme Family
STI-571/Gleevec	Chronic Myeloid Leukemia	Novartis	c-Abl kinase	Tyrosine kinase
Fluoroquinolone/Ciprofloxacin	Bacterial infection	Bayer	Gyrase	ATP Hydrolase
Saquinavir/Invirase, Ritonavir/Norvir, Indinavir/ Crixivan, Nelfinavir/Viracept, Amprenavir/Agenerase, Fosamprenavir/Lexiva,	AIDS	Roche, Abbott, Agouron, Merck, Vertex	HIV-1 Protease	Aspartylprotease
Trusopt	Glaucoma	Merck	Carbonic Anhydrase	Lyase
Thymitaq	Cancer	Agouron	Thymidylate synthase	Methyl transferase
Celecoxib/Celebrex, Rofecoxib/Vioxx	Inflammation, rheumatoid arthritis	Searle, Merck	Cox-2	Oxidoreductase
AG3340/Prinomastat	Cancer	Agouron	Matrix metalloprotease	Metalloprotease
Oseltamivir phosphate/Tamiflu, Zanamivir/Relenza	Influenza	Roche	Neuraminidase	Glycosidase

TIP Content and Algorithm Engine

- Interrogating the druggable genome with structural informatics MolecularDiversity (2006)
- STRUCTFAST: Protein Sequence Remote Homology Detection and Alignment Using Novel Dynamic Programming and Profile-Profile Scoring Proteins. 2006 64:960-967
- StructSorter: A Method for Continuously Updating a Comprehensive Protein Structure Alignment Database J. Chem. Inf. Model. 2006, 46, 1871-1876
- Convergent Island Statistics: A fast method for determining local alignment score significance. Bioinformatics, 2005, 21, 2827-2831.

Nature Exploits Site Similarity...

Pregnane X-receptor – PXR ("sensor)" →CYP3A4 ("executioner") <u>PXR Binds > 50% drugs</u> Including some bile acids, statins, herbal components, a selection of HIV protease inhibitors, calcium channel modulators, numerous steroids, plasticizers and monomers, organochlorine pesticides, a peroxisome proliferator-activated receptorãantagonist, xenobiotics and endobiotics...

Site Similarity Coloring

Highly Similar Receptor regions

Dissimilar Receptor regions

Borrowing Matter Ideas using Site Similarity

Kinase SAR Knowledgebase (KKB) – Hot Targets

Eidogen-Sertanty KKB SAR Data Point Distribution

> 384,000 SAR data points curated from > 5100 journal articles and patents

Kinase Knowledgebase (KKB)

Kinase inhibitor structures and SAR data mined from

Kinase Validation Set

Three sizable datasets freely available to the research community

http://www.eidogen-sertanty.com/kinasednld.php

Multi-Kinase Inhibitors

Nature Reviews | Drug Discovery Vol 8 | February, 2009

Drug (company)	Target	Highest phase	Indication*
Sorafenib (Bayer and Onyx)	PDGFR, VEGFR2 and 3, FLT3, KIT, RET, RAF	Launched	Hepatocellular carcinoma, RCC, renal tumour
Dasatinib (BMS)	BCR–ABL, FYN, SRC, LCK, EPH	Launched	ALL, CML
Nilotinib (Novartis)	PDGFR , ABL, KIT	Launched	CML
Sunitinib (Pfizer)	PDGFR, VEGF2, FLT3, KIT	Launched	Gastrointestinal tumour, RCC
Motesanib (Amgen and Takeda)	PDGFR, VEGFR, KIT	Phase III	NSCLC
Vandetanib (AstraZeneca)	EGFR, VEGFR2, RET	Phase III	Thyroid tumour, NSCLC
Lestaurtinib (Cephalon)	JAK2, FLT3, TRKA	Phase III	Myeloid leukaemia
XL184 (BMS and Exelixis)	VEGFR2, MET, KIT, FLT3, RET, TEK	Phase III	Thyroid tumour
Pazopanib (GSK)	PDGFR, VEGFR1, 2 and 3, KIT	Phase III	Renal tumour, sarcoma

$\label{eq:table_loss} Table \; 1 \, | \, \textbf{Selected multi-target kinase inhibitors}$

*Indication given for highest phase; all drugs are also in lower phase clinical trials for other oncology indications. ALL, acute lymphoblastic leukaemia; BMS, Bristol–Myers Squibb; CML, chronic myeloid leukaemia; EGFR, epidermal growth factor receptor; GSK, GlaxoSmithKline; NSCLC, non-small-cell lung cancer; PDGFR, platelet-derived growth factor receptor; RCC, renal cell carcinoma; VEGFR, vascular endothelial growth factor receptor.

Imatinib (Gleevec: Novartis)	ABL, PDGFR, KIT	CML, GIST
Gefitinib (Iressa: Astra Zeneca)	EGFR, (ERBB4,GAK,)	NSCLC

Kinome by Sequence Similarity

Kinase Domain Sequence Similarities - MST

PCA View – All Pairwise Similarities

494 domain sequences; 3 PCA dimensions preserve 61 % variability

Kinase Target Similarities by SAR

Extracting Kinase Data Sets

- Only enzymatic (homogeneous) assays with defined target
- Only high quality data (IC50, Ki, Kd)
- Standardizing chemical structures (salt forms, stereochemistry, E/Z geometry, tautomers, ionization)
- Kinase target Entrez Gene names and SwissProt accessions
- Aggregate data by structure first in an individual experiment and then globally by unique kinase and structure
- > 189,119 unique (structure target) data points (366 kinases)
- > 93,121 unique structures

Relating Kinase Targets by Compound Activity

 "ACTivity similarity" for compounds tested in common which are active for one (or both) target(s)

$$ACTsim_{ij} = 1 - \frac{1}{N} \sum_{k=1}^{N>2} \frac{\left| pIC50_{ki} - pIC50_{kj} \right|}{\max pIC50_{diff}}$$

Vieth et.al. "Kinomics" Biochim Biophys Acta 2004 243

- Activity cutoff pVal ≥ 6.5; minimum 20 actives per kinase pair
- Compute Minimum spanning tree (Kruskal)
 - Visualization as network tree (Cytoscape)

Side note: "Activity fingerprint" (for a comprehensive activity matrix) Bamborough et.al. J Med Chem **2008**, 7898

Relating Kinase Targets by SARsim 'Features'

- Laplacien-modified Naïve Bayesian models using FCFP_4 fingerprints
 - Measure contribution of a bit in a fingerprint for a specific outcome
 - Assume all variables are independent
 - A compound is scored by summing the weights of its fingerprint bits
- Kinase models compared by the Pearson correlation coefficient of the vector of the probabilistic weights (log of Avidon weights) of all fingerprint bits

Adopted from Schuffenhauer Org Biomol Chem 2004 3256

- Activity cutoff pIC50 > 6.5; all other compounds negative
- Select models with ROC > 0.8 and minimum 20 actives
- Compute the correlation matrix

Kinase SAR Naïve Bayse Models

Kinase Target Similarity by ACTsim/SARsim

Kinase SAR-based Similarities – Summary

- Growing body of accessible kinase inhibition data facilitates a more comprehensive analysis of kinase polypharmacology
- > Evolving picture, currently still a sparse kinase inhibitor matrix
- SAR similarity analysis supports a global intuitive trend: the more similar a kinase the more likely to bind to the same compound
- Phylogenetic kinase tree breaks down in activity space; many examples of compounds that bind to "distant" kinases
- Bayesian models are robust and tolerant to noise and false positives
- Considering "features" maybe less sensitive to the gaps in the accessible data and has the potential to predict cross reactivity for novel compounds
- Fairly robust wrt activity cutoff and fingerprints used
- > Be aware of limitations of descriptor-based statistical modeling
- No consideration of how a compounds binds (DFG-in/-out)
- Small molecules can in many cases be optimized to differentiate between very similar (sequence) kinases in many cases

Kinome by Local Structural Binding Site Similarities (physicochemical)

Kinases Comparison by ATP Site Similarity

- Extract kinase domain sequences (Sugen, Swissprot, PFAM)
- Model almost the entire Kinome (501 sequences) using STRUCTFAST automated homology modeling (1,117 templates, > 5,000 models)

STRUCTFAST, Proteins **2006**, 960

- Define ATP binding sites for all models (homology and predicted)
- Compute binding site similarities
 - Define binding site amino acid features
 - Construct a graph: nodes are all corresponding features of the two sites; edges exist if the spatial distance of the a feature pair is similar between the two sites
 - Compute a complete sub-graph by clique detection (~100 solutions)
 - Overlay sites of the clique solution and sum up the corresponding surface areas
- Compute scores for all site pairs and each site for itself
- Normalize Tanimoto-like: AB_Norm := AB / (AA + BB AB)
- Analyze and visualize (MST, PCA, hierarchical clustering)

Preliminary results reported (DFG-in only, homology sites only)

Maximum local site similarity – MST

PhysChem SiteSim vs. Domain Sequence Identity

Example: PhysChem SiteSim vs. Domain Seq ID

- STE_STE2_HGK (MAP4K4): template 1u5rA
- TK_Musk_MUSK (MUSK) : template 1ir3A
- Full Sequence identity: 0.22 Site Sequence identity: 0.55
- Normalized (physicochemical) site similarity: 0.84

.VGNGTY.V.A.K.M.E.A.MEFC.AGS.D.D.QN.L.D MAP4K4 . IGEGAF V A K - E V FEYM -GD - N - N LMIISK

MAP4K4 and MUSK Small Molecule Inhibitors

AURKA and SRC Kinase Dual Inhibitors

diverse subset

Kinome Site Similarities – Summary

- Relating kinases by local binding site similarity may be meaningful for development of selective inhibitors or compounds with desired profiles
- Many experimental examples confirm the validity of this approach
- Results suggest an expected global trend that similar sequence results in structural- and physicochemical- similar binding sites
- Dissimilar sequences do not always result in different binding sites
- There are subtle differences in the kinase site relationships among groups and sub-types
- Strong template effect
 - only homology sites (from co-crystal templates) are used in the present analysis (similarities using entire solvent accessible ATP sites)
 - ➢ for many kinases no experimental structures exist, but they can be modeled
- Although almost all kinases are modelable; experimental coverage and quality of structures will likely influence results
- Growing body of structural information will optimize this picture (in particular co-crystal structures)

LigandCross: Shuffling Ligand Functionality

Similar to Vertex's BREED: J. Med. Chem. 47, 2768 (2004)

From Ligand Query to Sites to New Ligand Ideas

DS-LibDock Results DS-Visualize Results

Step 1: Find Co-complexes and Sites from Ligand-Structure-Search

Molecule	ligname	similarity	pdbcode	siteeid	FourCode	pdbID	pdbBnxNumber	proteinld	title	classification	source	compound	releaseDate	journalTitle	journalReference	exptype
	STI	1	2pi0A	1309707	2010	2010	1305799	42526	LCK BOUND TO MATINB	TRANSFERASE	MOL_D: 1; ORGANISM_SCIENTIFIC: HOMO SAPIENS; ORGANISM_COMMON: HUMAN; GENE:LCK; EXPRESSION_SYSTEM: SPODOPTERA FRUGIPERDA; EXPRESSION_SYSTEM_COMMON: FALL ARMYWORM; EXPRESSION_SYSTEM_VECTOR_TYPE: ION_SYSTEM_PLASMID:	MOL_ID: 1; MOLECULE: PROTO- ONCOGENE PROTEIN KINASE LCK; CHAIN: A; FRAGMENT: PROTEIN KINASE; SYNONYM: P56-LCK, LYMPHOCYTE CELL- SPECIFIC PROTEIN- TY/ROSINE KINASE, LSK, T CELL- SPECIFIC PROTEIN- TY/ROSINE KINASE; EC: 2.7.10.2; ENGINEERED: YES	09-OCT-07	CLASSIFYING PROTEIN KINASE STRUCTURES GUIDES USE OF LIGAND- SELECTIVITY PREDICT INACTIVE CONFORMATIONS: STRUCTURE OF LCK/IMATINIB COMPLEX	PROTEINS 2007	XRAY DIFFRACTION
	STI	1	20iqA	1146914	2oiq	2oiq	1125109	26318	STRUCTURE OF CHICKEN C-SRC KINASE DOMAIN IN COMPLEX WITH THE CANCER DRUG IMATINIB.	TRANSFERASE	; ORGANISM_SCIENTIFIC: GALLUS; M_COMMON: CHICKEN; GENE: ESCHERCHIA COLI; EXPRESSION_SYSTEM EXCHERCHIA COLI; EXPRESSION_SYSTEM_COMMON: BACTERIA; EXPRESSION_SYSTEM_STRAIN: BL21DE3; EXPRESSION_SYSTEM_VECTOR_TYPE: PLASMID; EXPRESSION_SYSTEM_PLASMID: PET28	MOL_UD: 1; MOLECULE: PROTO- ONCOGENE TY/ROSINE- PROTEIN KINASE SRC; CHAIN; A, B; FRAGMENT: KINASE DOMAIN; SYNOIYYM: P60-SRC, C- SRC, PF60C- SRC, PF60C- SRC; FC: 2.7.10.2; ENGINEERED: YES	20-MAR-07	C-SRC BINDS TO THE CANCER DRUG IMATINIB WITH AN INACTIVE ABL/C-KIT CONFORMATION AND A DISTRIBUTED THERMODYNAMIC PENALTY.	STRUCTURE V. 15 299 2007	XRAY DIFFRACTION
	STI	1	2hyyA	918207	Zhyy	2hyy	904013	16961	HUMAN ABL KINASE DOMAIN IN COMPLEX WITH IMATINIB (STI571, GLIVEC)	TRANSFERASE	MOL_ID: 1; ORGANISM_SCIENTIFIC: HOMO SAPIENS; ORGANISM_COMMON: HUMAN; GENE: ABL1; EXPRESSION_SYSTEM: SPODOPTERA FRUGPERDA; EXPRESSION_SYSTEM_COMMON: FALL ARMYWORM	MOL_D: 1; MOLECULE: PROTO- ONCOGENE TYROSINE- PROTEIN KINASE ABL1; CHAIN: A, B, C, D; SYNONYM: P150, C-ABL, ABELSON MURINE LEUKEMIA VIRAL ONCOGENE HOMOLOG 1; EC: 2.7.10.2;	16-JAN-07	STRUCTURAL BIOLOGY CONTRIBUTIONS TO THE DISCOVERY OF DRUGS TO TREAT CHRONIC MY'ELOGENOUS LEUKAEMIA.	ACTA CRYSTALLOGR.,SECT.D V. 63 80 2007	XRAY DIFFRACTION

Step 2: Find Other Receptor Sites from <u>Site-Similarity</u> Search

Site Name	Locus	Ligand	%Cor	Af Sequence Positions	
pdb2pl0/s1309707 (chain A)	LCK	STI	100	.L.V.AVK.E.LM.L.LV.I.TEYM.GS.I.YIHR.L.IADF	-
pdb2ofv/s916548 (chain B)	LCK	242	100	. U. V. AVK. B. IM. B. IV. I. FEYN. G. I. Y. H. B. LADF. I	- SSI
pdb2rl5/s1396160 (chain A)	-	2RL	100	LIG V.AVK.L.E.II.I.V.V.TEPCKFGN.L.CIR.L.ICDP	
pdb2e2b1/s1284639 (chain B)	ABL	406	100	L. Y. V. A. K. E. VY. I. LV. I. TEFMT. C. L. FIHRD. L. VADE	-

Example Ligands Extracted from Similar Sites

臭 Eidogen Sertanty

Step 3: LigandCross – Mixing Ligand Features from Aligned Sites

Example LigandCross Results

JEIdogen Sertanty

Step 4: LigandCross Ligands with Reported Biological Activity

Kinase Knowledgebase (plC50)										Baye	sian M	lode	l Pre	edic	tions (PP)				
LC-ID	ABL	PDGFR	PDGFRB	JAK3	KDR	LCK	MAPK14	TEK	KIT	RAF1	ABL	PDGFR	PDGFRB	JAK3	KDR	LCK	MAPK14	TEK	KIT	RAF1
G2G_STI_12	6.7	8	8								0.40	0.90	0.76	0.81	0.59	0.15	0.89	0.45	0.70	0.37
900_STI_1	6.1	8	8								0.38	0.91	0.76	0.72	0.55	0.16	0.88	0.42	0.71	0.55
7MP_1N8_4				7.8	9	9.5	8.7				0.36	0.49	0.34	0.32	0.94	1.00	0.95	0.67	0.86	0.39
7MP_1N8_2				6.8	8.3	9.5	9				0.37	0.46	0.31	0.44	0.92	1.00	0.92	0.69	0.84	0.45
7MP_RAJ_3					8.4			8.4			0.35	0.73	0.50	0.49	0.92	0.81	0.86	0.94	0.74	0.37
7MP_GIN_4					7.6						0.16	0.50	0.40	0.82	0.95	0.67	0.70	0.41	0.76	0.51
242_C52_2									7.9		0.30	0.28	0.29	0.74	0.80	0.66	0.74	0.31	1.00	0.43
LI3_L11_1							7.2				0.31	0.73	0.55	0.84	0.74	0.69	0.62	0.36	0.76	0.85
608_GIG_7										6.1	0.28	0.61	0.57	0.69	0.93	0.50	0.60	0.68	0.85	0.50
KIN_BMU_4										6.1	0.31	0.43	0.45	0.78	0.75	0.57	0.77	0.33	0.81	0.25
G2G_KIN_3										6.1	0.25	0.51	0.52	0.75	0.89	0.59	0.64	0.43	0.84	0.43

Step 5: LigandCross Ligands reDocked into s1309707

DS-LibDock

Results

DS-Visualize

Results

Potent Kinase Inhibitors Docked (s1309707)

LigandCross Examples using "Added Diversity"

4343448_809_27:

CDK4: 6.80 CDK2: 5.63 CDK2: 6.12 CDC2: 5.58 CSK: 5.99 CDK5: 6.81 CDK4: 6.80 CDK2: 5.63 CDK2: 6.12 CDC2: 5.58 CDK4: 6.80

4272835_2425813_23: PTPN1: 4.24 PTPRA: 4.21

4363734_4291996_2: RAF1: 9.00 MAPK1: 5.29 BRAF: 8.05 BRAF: 8.52

4208857_4208857_1: FAK2: 8.22 KDR: 5.86 PDGFRB: 4.90 EGFR: 4.17 ERBB2: 5.23

900_STI_1: PDGFR: 8.00 PDGFR: 8.00 ABL: 6.10 PDGFRB: 8.00 PDGFR: 8.00 ABL: 6.10

242_A96_5: LCK: 9.40

242_MUH_1:

LCK: 9.40 TEK: 7.68 KDR: 8.22 MAPK14: 9.00 JAK3: 6.81

242_MUH_2:

KDR: 8.40 TEK: 8.40 TEK: 8.40 KDR: 8.40 TEK: 8.40 KDR: 8.40

406_STI_1:

BCR_ABL: 8.40 BCR_ABL: 5.30 LYN: 8.06 ABL1: 8.07 ABL1: 8.40

Murcko Assemblies Found in Kinase Inhibitors

Murcko Assemblies: Contiguous ring systems plus chains that link two or more rings "The Properties of Known Drugs. 1. Molecular Frameworks", Guy W. Bemis and Mark A. Murcko, *J. Med. Chem.* 1996, 39, 2887-2893.

Positional Murcko Assemblies (parent inhibitors docked into s1309707)

	KDR KDR	En zyme Assay En zyme Assay	7.4437 7.4437	
	KDR	Enzyme Assay	7.0088	
	PDGFR PRKCA PRKCA ABL EGFR PDGFR PDGFRB PDGFRB PDGFRB PDGFRB PDGFRA ABL PDGFRB	Enzyme Assay Enzyme Assay Enzyme Assay Enzyme Assay Enzyme Assay Enzyme Assay Cell-Based Assay Enzyme Assay Enzyme Assay Enzyme Assay Enzyme Assay Enzyme Assay Cell-Based Assay	7 4.1427 6.3979 4.1871 7 7 7.1871 6.3979 6.2218 7 5.2218 6.3979 6.3979 6.3979 6.396	
NH NH	ROCK ROCK1	En zyme Assay En zyme Assay	6.5421 6.5229	
	IRAK4	En zyme Assay	5.9370	
	PRKCA PRKCD ABL EGFR	Enzyme Assay Enzyme Assay Enzyme Assay Enzyme Assay	4.9788 4.4089 5.7447 4	

LigandCross Results: Positional Murcko Assemblies from docked Kinase inhibitors (s1309707)

Kinase Activity ????

Conclusions

- Systematic modeling and analysis of both small molecule activity data and protein structure site similarities can reveal pharmacologically relevant insights and predict possible cross reactivity within (and across) target families
- Systematic analysis of protein site similarities is in many cases consistent with existing experimental SAR
- The structurally resolved and modelable proteome is a very rich source for new matter ideas
- LigandCross can be an effective strategy to generate novel, bioactive molecules from co-complex information
- There is synergy between protein structure information and small molecule SAR data

Acknowledgements

- Stephan Schürer
- Kevin Hambly
- Joe Danzer
- Brian Palmer
- Derek Debe
- Aleksandar Poleksic
- Accelrys/Scitegic Shikha Varma-O'Brien/Ton van Daelen

Add'l slides

Conclusions

- Significant receptor-site similarities exist within and across target families
- The structurally resolved and modelable proteome is a very rich source for new matter ideas
- LigandCross can be an effective approach to generating novel, bioactive matter using co-complexes, known inhibitors, and/or fragment-based information.

About Eidogen-Sertanty

- Knowledge-Driven Solutions Provider
 - Sertanty established in 2003, acquired Libraria assets
 - Sertanty acquired Eidogen/Bionomix in 2005→ Eidogen-Sertanty
 - \$20M invested: Libraria (\$6M), Eidogen/Bionomix (\$12M), Sertanty/ES (\$2M)
 - 14 distributed FTE's (4 US and 10 India)
 - Worldwide (bio)pharmaceutical customer base
 - Cash-positive since 2006
- Databases & Software Annual Subscriptions
 - *TIPTM* Protein Structural Informatics Platform
 - *KKBTM* Kinase SAR and Chemistry Knowledgebase
 - CHIP[™] Chemical Intelligence Platform
- DirectDesign[™] Fee-For-Service
 - In Silico Target Screening ("Target Fishing" and Repurposing)
 - Target and compound prioritization services
 - Fast Follower Design: Novel, Patentable Leads

STRUCTFAST[™]

STructure Realization Utilizing Cogent Tips From Aligned Structural Templates

Basic Principle: Gaps known to exist should not be strongly penalized.

Leverages experimental structure and structural alignment data to create better alignments

TIP (Eidogen-Sertanty) / Debe et. al. Proteins 2006, 960

STRUCTFAST[™] Algorithm Comparison

Alignment	Scoring Methods	Gap Treatment	Examples
Sequence- Sequence	BLOSUM PAM GONET	Length Proportional Affine	BLAST FASTA Smith-Waterman Needleman- Wunsch
Sequence-Profile	PSSM	Affine	PSI-Blast
	HMM	Position-Specific	HMMer
Sequence-	Threading potential	Affine	Raptor
Structure		Position-Specific	GenThreader
Profile-Profile	Dot-product	Position-Specific	3D-PSSM
	Log Average	Structural Family-	FFAS
	Analytic Statistics	based	STRUCTFAST

Eidogen-Sertanty Inc.

STRUCTFAST[™] CASP6 Results

December 2004 CASP6 Total Comparative Modeling Results

of models placed in the top 20 according to the number of correctly aligned residues

Group Name (Servers in Red)	# of Models in the Top 20				
KOLINKSI-BUJNICKI	79				
Jones-UCL	69				
GeneSilico-Group	60				
STRUCTFAST	54				
BAKER	53				
Ginalski	51				
TOME	51				
Skolnick-Zhang	50				
CBRC-3D	38				
FISCHER	37				
CHIMERA	34				
SAM-T04-hand	29				
SBC	28				
Sternberg	27				
CAFASP-Consensus	26				
zhousp3	23				
ZHOUSPARKS2	23				
ACE	23				
SBC-Pmodeller5	19				
Other Notables: FAMS	15				

4

Accelrvs

STRUCTFAST had more than twice as many models in the top 20 compared to the second best automated server.

Only 3 of 124 hand modeling teams produced better alignments than **STRUCTFAST**.

SiteSorter[™] binding site comparison

Weighted Clique Detection Algorithm (importance of points related to conservation in multiple sequence alignment)

Surface atoms assigned one of 5 different chemical characters (pseudocenters); matching points increase the site similarity score

TIP (Eidogen-Sertanty) / Klebe et. al dial General 2002 ty