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A priori knowledge of secondary structure content can be of great use in theoretical and 
experimental determination of protein structure. We present a method that uses two 
computer-simulated neural networks placed in “tandem” to predict the secondary structure 
content of water-soluble, globular proteins. The first of the two networks, NETl, predicts a 
protein’s helix and strand content given information about the protein’s amino acid 
composition, molecular weight and heme presence. Because NET1 contained more 
adjustable parameters (network weights) than learning examples, this network experienced 
problems with memorization, which is the inability to generalize onto new, never-seen- 
before examples. To overcome this problem, we designed a second network, NET2, which 
learned to determine when NET1 was in a state of generalization. Together, these two 
networks produce prediction errors as low as 50% and 56% for helix and strand content, 
respectively, on a set of protein crystal structures bearing little homology to those used in 
network training. A comparison between three other methods including a multiple linear 
regression analysis, a non-hidden-node network analysis and a secondary structure 
assignment analysis reveals that our tandem neural network scheme is, indeed, the best 
method for predicting secondary structure content. The results of our analysis suggest that 
the knowledge of sequence information is not necessary for highly accurate predictions of 
protein secondary structure content. 

Keywords: secondary structure content; neural network; memorization; 
protein structure prediction; protein folding 

1. Introduction 

While it is generally accepted that an amino acid 
sequence defines a protein’s structure (Anfinsen, 
1973), our present knowledge is still insufficient to 
predict correctly the three-dimensional fold of a 
protein. Though model-building procedures offer 
some insight into protein structure, unless there 
exists a highly homologous sequence(s) of known 
structure (Blundell et al., 1987, 1988; Greer, 1981, 
1990), a less than satisfactory secondary structure 
prediction (Chou & Fasman, 1974; Garnier et al., 
1978; Levin & Gamier, 1988; Lim, 1974; Qian & 
Sejnowski, 1988; Holley & Karplus, 1989) will have 
to suffice. With the hope of improving secondary 
structure prediction performance, some have 
included a priori information of protein function 
(Nishikawa & Ooi, 1982; Nishikawa et al., 1983), 
protein class (Kneller et al., 1990) and overall 
secondary structure content (Garnier et al., 1978). 

t Present address: Molecular Design Ltd., 2132 
Farallon Drive, San Leandro, CA 94577, U.S.A. 

Because the a priori knowledge of secondary struc- 
ture content can provide useful boundary con$itions 
for the theoretical as well as the experimental deter- 
mination of protein structure, we have focused on 
predicting secondary structure content utilizing 
readily available information such as amino acid 
sequence, amino acid composition, molecular weight 
and heme group presence or absence. Our primary 
tool has been the computer-simulated neural 
network. 

Computer-simulated neural networks have 
recently gained much attention (Crick, 1989). The 
application of neural network models toward a 
variety of problems associated with protein struc- 
ture prediction (Qian & Sejnowski, 1988; Holley & 
Karplus, 1989; Kneller et al., 1990; Bohr et al., 1988; 
McGregor et al., 1989; Bohr et al., 1990; Holbrook et 
al., 1990; Muskal et al., 1990) provides testimony to 
their versatility. However, because a supervised 
hidden-node network can be trained to map any set 
of input patterns to any set of output patterns, 
feed-forward network computing often falls into the 
trap of providing a set of parameters that perform 
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very well on the database of learning examples, but 
very poorly on examples outside the learning set. In 
neural network terminology, this is called “memori- 
zation”. In general, memorization will result when 
the number of adjustable parameters (network 
weights) is large relative to the number of learning 
examples or observations. 

In our approach to predicting secondary structure 
content, we were forced to confront the issue of 
memorization because our hidden-node neural 
networks contained a large number of weights 
relative to learning examples. Network training is 
an iterative process. Therefore, neural networks 
typically learn general features early on and absorb 
more specific details in the later stages of training 
(Hertz et al., 1991). Memorization can be thought of 
as overloading on specifics to the extent that a 
neural network loses both its interpolation and 
extrapolation ability. At this point, a network 
becomes nothing more than a database look-up 
device. 

To address this issue of memorization, we 
employed a second neural network (NETZ), which 
learned to determine when our first network (NETl) 
was in a state of generalization. This “tandem” 
network approach not only outperforms other 
means of predicting secondary structure content, 
such as counting secondary structure elements from 
a secondary structure prediction scheme (Qian & 
Sejnowski, 1988; Pascarella & Bossa, 1989) and a 
multiple linear regression analysis (Davies, 1964; 
Krigbaum & Knutton, 1973), but also is comparable 
to the accuracy of the most popular method of 
secondary structure assignment given knowledge of 
protein structure (Kabsch & Sander, 1983). 

2. Methods 

(a) Database 

The database of 104 protein crystal structures similar 
to those chosen by Qian & Sejnowski (1988) and Kneller et 
al. (1990) was used to optimize our networks (Table 1). 
We selected 15 additional proteins that have secondary 
structure content ranging from nearly all helix to all 
strand (Table 2). We shall refer to the database of 104 
crystal structures, which was used for network optimiza- 
tions, as OPTBASE? and the database of 15 crystal 
structures, which was used for final evaluation, as 
EVALBASE. Homologies between proteins within 
OPTBASE were desired since it was necessary to learn the 
effects of small changes in amino acid composition, 
molecular weight and heme group presence with respect 
to secondary structure content. It should be noted, 
however, that proteins in OPTBASE have little homology 
with those found in EVALBASE (see Table 2). 

In both databases, amino acid compositions were 
normalized to values between @O and 1.0, molecular 

t Abbreviations used: OPTBASE, database of 104 
protein crystal structures used for optimization; 
EVALBASE, database of 15 protein crystal structures 
used for evaluation; DSSP, (Kabsch & Sander, 1983); 
m.l.r., multiple linear regression. 

weights were divided by 1 x 104. the presence or absence 
of bound heme groups (determined by HETATM records 
in the protein databank entries) were represented by 1.0 
and @O, respectively, and the secondary structure assign- 
ments determined by DSSP ((H): a+3,0-helix; (E): 
b-strand (Kabsch & Sander. 1983)) were counted and 
normalized to values between @O and 1.0. While DSSP 
was known to be rather conservative in its secondary 
structure assignment, we deemed it, necessary to quantify 
the differences between assignments by DSSP and those 
found in the HELIX and SHEET records provided by the 
authors. For this analysis, we required that entries that 
contained HELIX and/or SHEET records did not claim 
to use DSSP for secondary structure assignments and had 
clear, non-redundant assignment,s for each chain (Ion- 
sidered in Table 1. Table 3 shows the average difference 
and standard deviation between assignments by DSSP 
and authors for 80 proteins in OPTBASE. We suspect the 
true differences to be slightly larger since it is likely that 
some of the authors actually used DSSP for their 
secondary structure assignments without noting it in the 
REMARK records. This would result, in an artificially 
high number of identical matches between assignments by 
authors and DSSP. therefore decreasing t,he average 
difference. 

(b) Neural network training procedure 

The process of training a feed-forward network begins 
with a set of input/output patterns (the “training” or 
“learning” set). For our network that predicted secondary 
structure content (WETl), the input pattern was a string 
of real numbers representing a protein’s amino acid com- 
position, molecular weight and heme group presence 01 
absence and the output pattern was the protein’s 
secondary structure content (Fig. l(a)). xetwork training 
then involved determining a set of weights that mini- 
mized the error between the network’s prediction and the 
true secondary structure content for each protein found in 
OPTBASE. More precisely, given thr following 
definitions: 

i = 1 ninputs: 
i = I nhidden; 
k = 1 noutputs; 
r = 1 numexamp; 

Ii,: input value i, for example, e (i.e. amino acid 
camp., mol. wt., heme); 

O,,: network output value k, for example, e (i.e. 
predicted %helix, %&and): 

T,,: target output value , for example. e (i.e. observed 
%helix, %strand); 

El learning rate; 

the goal of network training is to minimize the following 
equation. referred to as the totalerror: 

E(w) = (1/2.numexamp) 11 (Tke-O&. (1) 
e k 

where w is a vector representation of the network weights. 
Our networks were fully connected. Therefore. a 

hidden-node network had weights connecting input-to- 
hidden and hidden-to-output layers. as well as a bias t)erm 
for each hidden and output node: 

WtI_Hji: weights ronnecting input-to-hidden nodes: 
WtH_Okj: weights connecting hidden-to-output nodes: 
BiasHidj: hidden node biases; 
BiasOut,: output node biases: 
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Table 1 
OPTBASE: database of protein(s) used to optimize secondary structure composition prediction methods 

Code Protein name Resolution Ni %H %E 

1PPD 2-Hydroxyethylthiopapain-crystal form D 2.0 
4APE Acid proteinase (endothiapepsin) 2.1 
2APP Acid proteinase (penicillopepsin) 1.8 
2APR Acid proteinase (rhizopuspepsin) 1.8 
2ACT Actinidin (sulfhydryl proteinase) 1.7 
1ACX Actinoxanthin 20 
3ADK Adenylate kinase 2.1 
1CTX Alpha cobratoxin 2.8 
2ALP Alpha-lytic protease 1.7 
2LDX Apo-lactate dehydrogenase isoenzyme C4 296 
BATC Aspartate carbamoyltransferase 25 
1PPT Avian pancreatic polypeptide 1.37 
1AZU Azurin 27 
PAZA Azurin (oxidized) 1.8 
1REI Bence-Jones immunoglobulin rei var. portion 2.0 
2RHE Bence-Jones protein (lambda, var. domain) 1.6 
4CPV Calcium-binding parvalbumin 1.5 
3ICB Calcium-binding protein 2.3 
2CAB Carbonic anhydrase form B 2.0 
2CA2 Carbonic anhydrase II (carbonate dehydratase) 1.9 
5CPA Carboxypeptidase alpha (Cox) 1.54 
BCAT Catalase 2.5 
4CTS Citrate synthase 2.9 
3CNA Concanavalin A 24 
1CRN Crambin 1.5 
2SOD Cu, Zn superoxide dismutase 2.0 
2B5C Cytochrome b5 (oxidized) 2.0 
1CCR Cytochrome c (rice) 1.5 
2CYP Cytochrome c pcroxidase (baker’s yeast) 1.7 
2CCY Cytochrome c’ (Rhodoapirillum nwlischianum) 1.67 
3C2C Cytochrome c2 (reduced) 1.68 
ICY3 Cytochrome c3 (Desuljovibrio desulfuricans) 2.5 
2CDV Cytochrome c3 (Desulfovibrio vulgaris miyazaki) 1.8 
lCC5 Cytochrome c5 (oxidized) 25 
45lC Cytochrome cs5i (reduced) 1.6 
PMDH Cytoplasmic malate dehydrogenase 2.5 
3GPD D-glyceraldehyde-3-phosphate dehydrogenase 3.5 
4DFR Dihydrofolate reductase 1.7 
4FDl Ferredoxin (Azotobacter vinelandii) 1.9 
1FDX Ferredoxin (Peptococcus aerogenes) 2.0 
YFXC Ferredoxin (Spirulina platensis) 25 
1CYC Ferrocytochrome c 2.3 
lFX1 Flavodoxin 20 
4FXN Flavodoxin (semiquinone form) 1.8 
2GCH Gamma chymotrypsin A 1.9 
1GCR Gamma-II crystallin 1.6 
2GN5 Gene 5 DNA-binding protein 2.3 
1GCN Glucagon (pH 6-pH 7 form) 3.0 
lGP1 Glutathione peroxidase 2.0 
3GRS Glutathione reductase 1.54 
1HMQ Hemerythrin (Met) 2.0 
3HHB Hemoglobin (deoxy, human) 174 
1FDH Hemoglobin (deoxy, human fetal) 2.5 
1ECD Hemoglobin (erythrocruorin, deoxy) 1.4 
2DHB Hemoglobin (horse, deoxy) 2.8 
1HDS Hemoglobin (sickle cell) 1.98 
2LHB Hemoglobin V (cyano, Met) 20 
BADH Holo-liver alcohol dehydrogenase 2.9 
lFC2 Immunoglobulin Fc 2.8 
2IG2 Immunoglobulin Gl 3.0 
2MCP Immunoelobulin MC/PC603 

Inorganic pyrophosphatase 
3.1 

1PYP 30 
BINS Insulin 2.5 
1GFl Insulin-like growth factor I NA 
lGF2 Insulin-like growth factor II NA 
2KAI Kallikrein A 2.5 
LABP L-Arabinose-binding protein 2.4 
5LDH Lactate dehydrogenase H4 and S-LAC-/NAD+ 2.7 
2LHl Leghemoglobin (acetate, Met) 2.0 
2LZM Lysozyme (E. coli infected with bacteriophage T4) 1.7 

AB 

A 
A 

A 
A 

0 

B 

A 
R 
A 

AB 

A 
AB 
AG 

AB 
AB 

A 
D 
LH 
LH 

AB 

AB 

264 170 
9.4 458 

139 455 
13.8 449 
303 18.3 

0.0 439 
54.6 129 

56 22.5 
7.1 525 

384 169 
327 292 
590 @O 
11.3 258 
163 333 

2.8 47.7 
2.6 430 

56.5 @O 
57.3 0.0 
156 30.9 
164 289 
38.1 163 
32.5 155 
52.4 41 

0.0 40.5 
47.8 87 

20 384 
460 247 
423 PO 
592 55 
748 0.0 
429 0.0 
246 0.0 
280 9.3 
47.0 0.0 
590 0.0 
42.6 189 
272 21.0 
264 308 
340 13.2 
148 7.4 
133 153 
340 0.0 
32.0 21.8 
362 21.0 

9.7 331 
7.5 443 
0.0 46 

48.3 @O 
322 158 
34.3 241 
699 0.0 
787 0.0 
72.1 PO 
76.5 @O 
645 0.0 
56.3 0.0 
75.2 PO 
17.9 19.3 

8.7 451 
6.6 41.0 
3.8 47.7 

150 190 
56.0 40 
37.1 @O 
388 60 

9.1 328 
36.6 59 
390 9.3 
77.8 0.0 
665 85 



716 

Code 

S. M. Muskal and S.-H. Kim 

Table 1 (continued) 

Protein name Resolution Ni %H :nE 

lLZ1 Lysozyme (human) 1.5 
1LZT Lysozyme triclinic crystal form (hen egg white) 1.97 
ZMLT Melittin 2.0 
7API Modified alpha 1-antitrypsin 30 
1MBD Myoglohin (deoxy, pH 8.4) 1.4 
1MBS Myoglobin (Met) 2.5 
1NXB Neurotoxin B I.38 
1HIP Oxidized high potential iron protein 2.0 
1PFC PFC’ fragment of an IgGI 3,125 
3PGK Phosphoglycerate kinase z2.5 
3PGM Phosphoglycerate mutase 1.8 
lBP2 Phospholipase A2 (bovine pancreas) 1.7 
lP2P Phospholipase A2 (porcine pancreas) 2.6 
3PCY Plastocyanin (HG2 + substituted) 1.9 
2PAB Prealbumin (human plasma) 1.8 
PSGA Proteinase A I.5 
3SGB Proteinase B (Streptomyces griseus) 1.8 
3RP2 Rat mast cell protease II 1.9 
1RHD Rhodanese 95 
lRN3 Ribonuclease A 1.45 
5RXN Rubredoxin (oxidized, Fe(IJI)) 1.20 
2STV Satellite tobacco necrosis virus 250 
lSN3 Scorpion neurotoxin (variant 3) 1.8 
4SBV Southern bean mosaic virus coat protein Z.8 
2SNS Staphylococcal nuclease 1.5 
2SSI Streptwmyces subtilisin inhibitor P.6 
2SBT Subtilisin novo 1% 
2TAA Taka-amylase A 3.0 
3TLN Thermolysin 1.6 
2TBV Tomotao bushy stunt virus 2.90 
1EST Tosyl-elastase 2.5 
1TIM Triose phosphate isomerase 2.5 
5PTI Trypsin inhibitor (crystal form II) 1.0 
1TGS Trypsinogen 1.8 

A 
AB 

A 

E 
A 

A 

A 

A 

Z 

39.2 7.7 
426 6% 
923 00 
27.5 35.5 
77.8 00 
72.5 04 
@O Il.9 

22.4 10.6 
3.6 30% 

34.5 11.1 
3@0 65 
48.8 6% 
435 4.8 
10.1 354 
7.0 51.8 
9.9 541 
65 51.9 
it+0 37.1 

297 l@Y 
21.0 38.7 
167 14% 
11.4 446 
12.3 18.5 
151 3:5:! 
20.6 199 
159 “43 
21.5 13.8 
262 144 
41.5 16.5 

41 304 
10.4 342 
45.7 17.0 
20.7 “41 
10.2 37.X 

Proteins were selected from the January, 1991 release of the Brookhaven Protein Databank (Bernstein et al., 1977). Protein databank 
code (Code), name (Protein name), resolution, chains used (Ni), and helix (‘&H) and strand (%E) composition of chains used are 
tabulated. The program DSSP (Kabsch & Sander, 1983) was used to calculate helix (a+ 3,,,) and strand compositions. For t,hese 
proteins, the average helix composition is 31.0% (u = 22.4) and strand composition is 193%) (u = 16.5). 

Table 2 
E VALBASE: database of proteins used to evaluate secondary structure composition prediction ,methods 

Code Protein name Resolution Ni T/,H O/,E Homology 

1LDB Apo-r-lactate dehydrogenase 2.8 41.8 (50.1) 191 (17.2) 5LDH (32 */“) 
Aspartate receptor (ligand domain) 2.5 782 (82.7) 0.0 (1.3) ZTAA (170/,) 

2P21 C-H-ma P21 protein catalytic domain 22 339 (31.9) 24.6 (152) 5LDH (159/O) 
3GAP Catabolite gene activator protein 25 AB 32.7 (451) 13.8 (14.0) 4CTS (12(y0) 
2GBP o-Galactose/n-glucose-binding protein 1.9 43.0 (356) 18.5 (6.7) 1ABP (160/6) 
4XIA D-Xylose isomerase 2.3 47.8 (447) 8.9 (143) 7API (13”/,) 
4TSl Tyrosyl-transfer RNA synthetase 2.5 AB 51.7 (57.7) 95 (166) 8CAT (13:/,) 
1GOX Glycolate oxidase 2.0 443 (51.5) 12.6 (102) 7API (13”,) 
1HNE Human neutrophil elastase 1.8 83 (8.8) 33.9 (37.3) 1EST (33”)1,) 
2LTN Pea lect.in 1.7 AB 35 (82) 47.4 (61.5) YCNA (19%) 
3PFK Phosphofructokinase 24 46.1 (48.1) 18.5 (17.7) 3GRS (15(x,) 
2PRK Proteinase K 1.5 26.9 (26.8) 21.5 (20.9) PSBT (309”) 
lR08 Rhinovirus 14 3.0 123 11.3 (7.3) 31.4 (358) 2IG2 (lz”:,) 
1THI Thaumatin I 1.5 12.1 (7.2) 348 (41.4) 2ALP (14%) 
1SGT Trypsin 1.7 12.1 (2@7) 345 (203) 1EST (2501;) 

Protein databank code (Code), name (Protein name), resolution, chains used (Ni), helix (yoH) and strand (%E) composition of chains 
used (NET1 + NET2 predictions enclosed in parentheses), and the protein in OPTBASE (Table 1) with greatest sequence homology 
(percent homology is enclosed in parentheses) are tabulated. The program DSSP (Kabsch & Sander, 1983) was used to calculate helix 
(a+3,,) and strand compositions. The program CLUSTAL (Higgins & Sharp, 1988) was used to calculate sequence homology. For these 
proteins, the average helix composition is 329% (u = 20.7) and strand composition is 21.9% (u = 1?5). 
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NET 2 

Generaluatton Helix ? Strand ? 

AA 

NET I /wf, Mf* Mfli lter 

A C D E mol. wt. Heme 

(a) 
Figure 1. The “tandem” neural network approach to 

secondary structure composition prediction. To use this 
strategy, an example protein’s amino acid composition, 
molecular weight and heme presence/absence are supplied 
as input to NET1 (part (a), lower left). NET1 makes a 
secondary structure composition prediction after every 30 
iterations of training on the examples in OPTBASE 
(Table 1). Memory factors (Mf) are computed using 
eqn (13) and supplied to NET2 along with the number of 
training iterations (Iter). NET2 predicts a memory state 
for each secondary structure prediction at each stage of 
NET1 training (part (b), upper right). With this tandem 
network strategy, NET2 can be used to determine the 
best secondary structure composition prediction of NET1 

which were vectorized as follows: 

w = ({ Biu.sHidj,( Wtl-Hji)i = 1 ninputs)j = 1 nhidden. 
{ BiasOut,, ( WtH_Okj)j = 1 nhidden} 

k= 1 .noutputs). (2) 

Given these weights, a fully connected hidden-node 
network will produce output node activities (secondary 

structure content predictions, generalization state, etc.) 
with the following equations: 

O,, = SIG I( WtH_Okj *Hi,) + BiasOut, (3) 
i 

and 

Hje = SIG 
(i 

I( WtI-Hji * Zi,) + BiasHidj , (4) 

where SIG is a non-linear activation function: 

SIG(x) = l/{l+exp(-r)}. (5) 

As stated, our goal was to train a network to predict 
secondary structure content, or to mathematically mini- 
mize eqn (1) over all the proteins in OPTBASE. While 
Rumelhart’s adaptation of gradient descent (Rumelhart 
et al., 1986a,b) could have been used for network training, 
its slow convergence rate would have made our experi- 
mentation impractical. We implemented a more powerful 
error-minimization procedure, the method of conjugate 
gradient back propagation. This method has been applied 
in a neural network context by Kramer & Sangiovanni- 
Vincentelli (1989) and Makram-Ebeid et al. (1989) and has 
been discussed theoretically by Hertz et al. (1991). We 
provide the method in an explicit form that is easy to 
program. 

The conjugate gradient method of minimizing eqn (1) 
requires the use of a direction vector d, which parallels 
eqn (2): 

d = (ABiasHidj,(AWtI-Hji)i= 1 ninputs} 
j= 1 nhidden, 

{ABiasOut,,(A WtH-O,,)j = 1 nhidden} 
k= 1 noutputs) 

The vector elements of d are defined by: 

ABiasHidj = E * 1 Ghidj,. 

A WtZ_Hji = E * 1 ihid,, * Ii,, 
e 

ABiasOut, = E * c clout,, , 
e 

with 

A WtH-O,, = E * c aout,, * Hje, 
e 

Ghidj, = Hje * (1 - Hj,) *c (bout,, * WtH-O,,), 
ll 

dout,,=O,,*(l-O,,)*(T,,-O,,). 

Table 3 
dverage differences (I), standard deviation of differences (a) and highest signed 

differences between ‘observed” secondary structure compositions 

Secondary structure 

2 IAi-Ql 
x=i=l (I= 

J 

i$l (x-IAirDil)’ 
Highest difference 

N N-l (A,-Di) 

Helix 
Strand 

52 54 1GCN (241) 
44 55 YPCY (26.3) 

Secondary structure elements provided by HELIX and SHEET records in the protein databank 
entries (Bernstein et al., 1977) and those made by the program DSSP (Kabsch & Sander, 1983) were 
used to calculate Ai (author) and Di (DSSP), respectively. Only 80 (N) of the 104 proteins in OPTBASE 
had clear, non-redundant secondary structure assignments in HELIX and SHEET records and did not 
claim to use DSSP. DSSP assigned more secondary structure in 32 of the 80 proteins (i.e. in 40% of the 
structures, (Ai- Di) < 90). The largest differences between helix and strand assignments were glucagon 
(IGCN) and plastocyanin (3PCY), respectively. All values listed are in percent. 

(‘5) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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The conjugate gradient method effects a series of line 
minimizations along a current direction vector, doid. 
Mathematically, this involves finding i such that 
E(w+1 *d,,,) is minimized. After 1 is determined, the 
network weights are changed by 1* dold and a new direc- 
tion vector d is calculated using eqns (3) to (5) and (7) to 
(12). Because of the line minimization, d is necessarily 
perpendicular to dold (Polak, 1971). I f  this process were 
repeated, a zigzag path to the minimum would result. 
Therefore, a better approach provides a compromising 
constant p that blends the gradient information contained 
in the old direction vector dold and the newly calculated 
direction vector d. This compromise is the basis of conju- 
gate gradient methods and attempts to prevent the new 
direction vector from spoiling the minimization achieved 
by the old one. Our training procedure instituted the 
Polak-Ribiere method (Press et aZ.. 1990) for computing 
/?. In practice, successive line minimizations result in a 
deterioration in /?; therefore after every “restart” 
iterations, the newly calculated direction vector d was 
used without the compromising constant p. 

In summary, the conjugate gradient method for 
network training is as follows. 

(1) Initialize and vectorize weights+w. 
(2) Calculate direction vector, d-d,,,, = d. 
(3) Line minimization: find 1 that minimizes: 

(4) 

E(w+l*d,,,). 
Update weights: 

w = w + i * dold. 

(5) 

(6) 
(7) 

Calculate new direction vector, d and total error, 
E(w). 
If  E(w) converged, stop. 
Tf reset gradient (restart). then let d,,, = d, else 

B = (d-d,,,) . d/&d. &A: Lv = d + B&c,. 
(8) dold = A,, 
(9) Go to step (3). 

We used the procedures LINMIN, MPU‘BRAK and 
BRENT developed by Press et al. (1990) for the line 
minimization of eqn (1) in step (3). 

We have developed an interactive, programmable 
neural network simulator (BIOPROP), which gives the 
user the ability to define variables, test and loop on these 
and other internal variables during a network simulation. 
Such an environment enables “jack-knife” training pro- 
cedures (see below), random-sample training and testing, 
architecture optimization, etc., BIOPROP can use either 
gradient or conjugate-gradient descent procedures for 
network t,raining. 

(c) Network optimization 

The 1st step in optimizing a feedforward network is to 
determine the best architecture for the task at hand. For 
3-layer networks, this involves determining the optimal 
number of hidden nodes. In most applications, the pro- 
cedure of choice is to vary systematically the number of 
hidden nodes. train the network to convergence, fix the 
weights and evaluate the network. The architecture with 
the best performance statistics is chosen for future experi- 
mentation. In our mapping, however, networks with 
greater than 4 hidden nodes contained more weights than 
examples in OPTBASE and the problem of memorization 
could not be avoided. 

We used the small database of examples to our advan- 
tage and instituted jack-knife training protocols. A jack- 

knife procedure systematically extracts 1 example from a 
database, derives prediction parameters (network 
weights, regression coefficients, etc.) on the remaining set 
of examples, replaces the example. and repeats until every 
example has been extracted, much like pulling out and 
replacing every blade in a Swiss Army knife. A jack-knife 
procedure not only has the advantage of increasing the 
effective learning set size, but it. also provides a wealth of 
statistical information after considering every example in 
a database as a true testing example. Even with the 
benefit of a jack-knife training protocol. however. our 
networks could still memorize the remaining proteins in 
OPTBASE. 

To overcome this problem, we employed a “best-case” 
method for network architecture determination. For each 
extraction in a jack-knife training procedure, we found 
the network architecture that performed best on each 
extracted example. Here, every reasonable architecture 
was considered for every extracted example. The architec 
ture that performed best on the extracted example was 
noted, the example was replaced, and a new example was 
selected. This process was repeated through the entire 
learning set. after which, the best performing architec- 
tures were counted and the most frequently occurring 
optimal architecture was selected. This method is referred 
to as best case because network training was stopped at 
the point of maximum generalization. While it is not 
statistically valid to develop a prediction method that 
requires knowledge of the correct answer, this best-case 
method was useful for determining a network architecture 
that had the greatest potential for maximizing prediction 
accuracy. 

For situations in which memorization was not, a 
problem. a simple sampling procedure was used for archi- 
tecture determination. In this case, a random set of 
examples was extracted from the database of learning 
examples. A network architecture was trained on t,he 
remaining examples until eqn (1) was minimized, the 
weights were fixed and the network was evaluated on the 
extracted examples. This procedure was repeated numer- 
ous times for each architecture so that average and &an- 
dard deviations of performances could be calculated for 
each archit,ecture. The architecture with the best, perform 
ante statist,& was the architecture of choice. 

Virtually everv error minimization procedure is plagued 
with multiple minima. Neural network training is no 
exception. Multiple minima can be spotted after a 
network is repeatedly trained on a fixed database. each 
time reinitializing the starting network weights. I f  the 
final totalerrors (eqn (1)) for all trials differ significant& 
from one another, then multiple minima do. indeed, exist. 

While one rould continue to reinitialize the network 
weights. train until convergence, and repeat until the 
lowest, possible totalerror is achieved. a better approach is 
to slightly perturb the converged set of weights in random 
directions (von Lehman et al.. 1988), train until totalerror 
convergence and repeat. The weights with the lowest 
totalerror will be the weights of choice. The big advantage 
of this approach is that after each weight perturbation. 
the number of training iterations until convrrgencr is 
significantly smaller t,han t,he number required with a 
completely randomized set of weights. Even more sophis- 
ticated methods such as the Metropolis algorithm 
(Metropolis et al., 1953) can be implemented to accept a,nd 
reject weight sets with different converged totalerrors. 
The conjugate gradient method of error minimization. 
coupled with weight perturbation is rapid enough to 
invest a sizeable amount, of time searching for the global 
minimum of eqn (1). 
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3. Results Table 4 
NET1 architectures obtained after training on 

OPTBASE proteins 
(a) NETl: predicting secondary structure content 

To predict secondary structure content, we 
designed a network (NETl) with a 22: H: 2 archi- 
tecture (22 input, H hidden and 2 output nodes) 
depicted in Figure l(a). The information of a pro- 
tein’s amino acid composition, molecular weight 
and heme group presence or absence was supplied to 
NET1 as a string of 22 real numbers, and the 
network was trained to produce two real numbers 
describing helix and strand content at its output 
nodes. 13ecause it is difficult for the sigmoid function 
(eqn (5)) to produce values near 00 and 1.0, we did 
not expect very accurate predictions on proteins 
with extremes in secondary structure content. The 
number of weights or adjustable parameters for this 
architecture with H hidden notes (eqn (2)) was 
H+22H+2+2H (=25*H+2) weights. 

Hidden nodes, 
H N H, 22 (4 E, x (4 

5 17 53 (54) 26 (2.6) 
6 18 9.0 (167) 47 (53) 
7 14 41 (52) 3.5 (57) 
8 25 2.4 (3.3) 3.6 (4.2) 
9 16 44 (7.0) 6.8 (7.4) 

10 14 7% (138) 53 (47) 

Totals 104 53 (8.1) 44 (52) 

For a reasonable number of hidden nodes (such as 
H > 4), NET1 contained more weights than 
examples in OPTBASE. Therefore, we determined 
optimal network architecture of NET1 by 
employing a best-case method. For each extraction 
in a jack-knife training procedure, we varied the 
NET1 architecture between five and ten hidden 
nodes. Table 4 shows the results of this procedure. 
Because we utilized the knowledge of the correct 
answer for a stopping criterion in training NETl, 
the data in Table 4 only suggest an architecture 
with the highest prediction potential. Before NET1 
can be used for secondary structure content predic- 
tions, a statistically acceptable criterion for halting 
NET1 training process was necessary. 

NET1 architectures, obtained after performing a best-case 
jack-knife training procedure on the proteins in OPTBASE, are 
listed. In this procedure. an example was extracted from 
OPTBASE, and each of the 6 network architectures 
(22 :5: 2 --, 22: 10 :2) was trained on the remaining set of 103 
examples. The architecture that performed best on the extracted 
example was chosen. The frequency that a particular 
architecture was chosen (N), average errors (I), and standard 
deviations of errors (a) in helix (H) and strand (E) predictions 
with that architecture are listed. The network architecture that 
had the highest value of N and the lowest prediction errors for H 
and E was chosen as the network architecture with the greatest 
prediction potential. This network architecture is highlighted in 
boldface. 

node’s memory factor will be small when its activity 
falls within the distribution of training set 
activities. 

The relationship between memory factors of 
NET1 and its state of generalization was not simply 
that small memory factors imply good general- 
ization. So, to learn the relationship between NET1 
memory factors and its generalization ability, we 
designed a second network, NET2 (see Fig. l(b)). 
NET2 had a (H + 1) : H’ : 2 architecture (H hidden 
nodes from NET1 +number of training iterations, 
H’ of it,s own hidden nodes and 2 output nodes). 
NET2 was a simple classification network designed 
to accept a set of memory factors at a stage of 
NET1 training as input, and produce the answers to 
the following two yes-or-no questions as output: Is 
NET1 in a state of generalization for its helix 
prediction? Is NET1 in a state of generalization for 
its strand prediction? Designed as such, NET2 could 
account for situations in which NET1 was in a state 
of generalization for one structural element while 
still learning the other (see Fig. 2(a) to (c)). 

(b) NETZ: determining NETl’s state 
of memorization 

NET2 was designed to determine when NET1 
training should be halted. Unfortunately, hidden- 
node N.ETl networks provided the best predictions 
at different points in training depending on the 
testing example and the number of training 
iterations (see Fig. 2(a) to (c)). We noted, however, 
that poor predictive performance usually resulted 
when the hidden node activities differed signifi- 
cantly from the distribution of hidden node activi- 
ties utilized on examples in the learning set. We 
therefore defined a memory factor (MA) for each 
hidden node j in NET1 : 

Mh= 
(Hj-Hj) ’ [ 1 aj ) (13) 

where I~j represents the average activity of hidden 
node j (learning set), Hi represents the activity of 
hidden node j (testing example) and Oj is the stan- 
dard deviation of activities of hidden node (learning 
set). 

Defined as such, a hidden node’s memory factor 
will be large when its activity on a testing example 
significantly differs from its distribution of activities 
used for learning set examples. Similarly, a hidden 

NET1 was considered to be in a state of general- 
ization if, after 200 training iterations, its structural 
content predictions were in error by no more than 
5%. After this, NET1 was considered to be on the 
course to memorization; or alternatively, NET1 was 
not in a state of generalization. We generated 
training information for NET2 by monitoring the 
training of NETl: (1) an example was extracted 
from our OPTBASE as in a jack-knife procedure; 
(2) NET1 was trained for 30 iterations with 
conjugate-gradient descent, and then tested both 
on the extracted example and on the remaining set 
of 103 examples; (3) NET1 memory factors 
(eqn (13)) were calculated and stored along with the 
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Figure 2. NET1 helix and strand composition predic.- 
tions as a function of its OPTBASE training for 3 
EVALBASE examples: (a) phosphofructokinase (3PFK); 
(b) catabolite gene activator protein (3GAP); and (c) 
human neutrophil elastase (1HNE). The horizontal lines 
indicate t,he observed secondary structure content as 
assigned by the program DSSP (Kabsch & Sander. 1983). 
The curved lines indicate the PJETl predictions. The 
points of greatest generalization occur at different points 
for each secondary structure composition of each protein. 

number of training iterations; (4) steps (2) to (3) 
were repeated until NET1 training converged 
(approx. 2000 iterations), after which the extracted 
testing example was replaced and another selected. 
The procedure (steps (1) to (4)) was repeated until 
every example in OPTBASE had been extracted. 
This procedure for generating input/output 
information for NET2 resulted in approximately 90 
examples per protein. With 104 proteins in 
OPTBASE, over 9000 examples were generat,ed for 
NET2 training. Given that H’ varied from five to 
eleven, we did not expect NET2 to possess the 
capacity for memorization. even for its largest 
possible architecture (a 9 : 11 : 2 architecture will 
contain 134 weights). 

Optimal architecture of NET2 (9 : H’ : 2) was 
determined by a simple sampling procedure. One 
hundred examples were randomly selected from the 
learning set generated for NETB, NET2 was trained 
until convergence on the remaining set of examples, 
and then tested on the 100 extracted examples. This 
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Table 5 
Performance of NET2 

Hidden nodes, H H, 1 (0) E, x (0) 

Pi 
0.35 (0.13) 0.44 (0.06) 
0.36 (@05) 0.49 (0.06) 

7 0.39 (0.12) 056 (0.05) 
8 042 (0.08) 057 (0.08) 
9 @41 (0.09) 0.57 (@08) 

10 066 (0.11) 0.68 (0.07) 
11 051 (0.09) 0.59 (096) 

For each architecture, 100 examples were selected at random 
from the generated NET2 database (see text), NET2 was trained 
until convergence on the remaining examples and tested on the 
100 extracted examples. This process was repeated 10 times for 
each architecture. The values reported are correlations between 
NET2 output node activities and the NET1 state of 
generalization for helix (H) and strand (E) predictions. Values 
enclosed in parentheses are standard deviations of correlations 
over the 10 trials. The architecture in boldface was chosen for 
NETZ. 

procedure was repeated ten times, each time with a 
new set of 100 examples (see Table 5). 

Because of the sizeable spreads in performance 
correlations in Table 5, we suspected a multiple 
minimum problem with NET2 optimization. As a 
control, we repeated the training of the optimal 
NET2 architecture (9 : 10 : 2, H’ = 10 hidden nodes), 
each time with a new set of initial weights. As seen 
in Figure 3, NET2 converged to a variety of 
different totalerrors. Note how small changes in 
totalerrors result in rather large changes in predic- 
tion performances. Clearly, the lowest totalerror is 
desired. To fully optimize NETB, we implemented 
the method of weight perturbation to escape from 
any possible local minima in the NET2 training 
procedure. After numerous training trials, we 
obtained what appeared to be a minimum totalerror 
for NETS. At this point, we considered NET2 
optimized. 

Once optimal architectures were determined for 
NET1 and NET2. NET1 was trained on the 

complete set of proteins in OPTBASE and its 
weight sets were saved every 30 iterations. A true 
evaluation of our “tandem-network” method was 
made by performing predictions on each of the 15 
examples in EVALBASE in the following manner: 
(1) amino acid composition, molecular weight and 
heme content of each protein were provided to 
NET1 as input; (2) NET1 performed helix- and 
strand-content predictions on this information using 
each of the weight sets previously saved; (3) for 
each prediction (representing a stage of training), 
memory factors were computed and given to NET2 
as input information; (4) NET2 outputs (each a 
numerical value between zero and unity) describing 
the NET1 state of generalization for helix and 
strand predictions were stored. After this procedure 
was repeated for each of the NET1 weight sets, the 
predictions made by NET1 with the strongest 
NET2 outputs were selected. This seemingly 
complex procedure accounted for the different 
points of memorization that NET1 experienced for 
helix and strand predictions. respectively (see 
Fig. 2(a) to (c)). 

Despite what appear to be moderate correlations 
in the optimization of NET2 in Table 5, after 
escaping multiple minima, NET2 did, indeed, learn 
when NET1 was in a state of generalization for both 
helix and strand predictions. Figure 4 displays the 
performance of NET1 and NET2 in tandem. Using 
this tandem-network approach, the average predic- 
tion errors for proteins within OPTBASE were 
4 1 y. (a = 4.5) and 4.1 y. ((T = 3.4) for helix and 
strand content, respectively, and the average 
prediction errors for proteins within EVALBASE 
were 50% (0 = 3.4) and 56% (0 = 4.9) for helix and 
strand content, respectively. 

(c) Non-hidden node network 

We designed a network similar to NET1 but 
without a layer of hidden nodes. This fully 
connected non-hidden-node network only contained 

0.1 I 0.62 
0 5 IO 15 20 25 30 35 40 45 50 55 60 65 

Trial 

Figure 3. Multiple minima in training of NET2. The complete set of examples generated for NET2 training was used 
in this experiment. For each trial, NET2 weights were initialized to random values. NET2 was trained with conjugate 
gradient descent until the totalerror (eqn (1)) converged to a minimum. ( + ), the various totalerrors at 

convergence. (. . . + . . .), the mean correlation (,/m) b e t ween NET2 outputs and its target outputs at convergence. 
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Figure 4. Observed and predicted secondary structure 
compositions using the tandem network method (a) on 
examples used in network optimization (OPTBASE), and 
(b) on true testing examples (EVALBASE). Circles repro- 

sent helix and triangles represent strand rompositions. 

weights connecting input-to-output nodes and a 
bias for each output node. The conjugate gradient 
descent training procedure (see Methods) was 
adpated for this non-hidden node network analysis 
by simply redefining equations (2), (3). (6) and (10) 
to consider the set of weights directly connecting 
input-to-output nodes. 

(d) Multiple linear regression 

Davies (1964), as well as Krigbaum & Knutton 
(1973), noted the correlation between amino acid 
composition and secondary structure content using 
the technique of multiple linear regression (m.1.r.). 
We computed m.1.r. coefficients on our considerably 
larger OPTBASE using the capabilities of the 
program LOTUS l-2-3 release 3 (1989). We per- 
formed a jack-knife procedure within the confines of 
a LOTUS l-2-3 spreadsheet. As in the non-hidden- 
node network analysis, the average and standard 
deviations of errors were calculated from the helix- 
and strand-content predictions after treating each 
extracted example as a true testing example. This 
procedure resulted in a set of 23 coefficients (1 
intercept + 20 amino acid coefficients + 1 molecular 
weight coefficient-t 1 heme coefficient) for each of 
the 104 proteins in OPTBASE. The average of the 
104 sets of coefficients derived in this jack-knife 
m.1.r. analysis are as follows: 

o/oH = -8%7+ 1.04W + 1.08X+ l.O4Y+ l.O9F+ 
1.18L + 694V + @86M + 0.99C + 0.97A + 
0.75G + 077H + 0.62P + 0.74s + 0.78T + 
0.80N + OSSQ + 087D + 077E + 0.93K + 
694R + 9OlMWT + 0.26HEMlC 

(14) 
and 

q&E= - 1~36+0~15W+O~lOl +001\‘+0.12F-- 
0~03L+@12V+@22M+0~06C’+610A+ 
0.26G + 0.32H + 0.23P + 0.30s + 0.3 1T + 
0.20N +919&+007D +027E+O.O6K + 
0.14R+O.OlMWT-615HEME 

(1.5) 

Non-hidden node NET1 networks only contained To calculate secondary structure content from 
22 * 2 + 2 = 46 weights. This was small relative to these equations, multiply amino acid compositions 
the number of examples in OPTBASE; and as (in fraction) by 160 and then by their respective 
expected, non-hidden node NET1 networks did not coefficients (W, T, Y: ., R). divide molecular 
experience problems with memorization. A jack- weight by 1 .O x 104 and then multiply by the 
knife training procedure was implemented with molecular weight coefficient, and multiply 1.0 (heme 
totalerror convergence (eqn (1)) as a stopping presence) or 90 (heme absence) by the heme coefi- 
criterion. Average and standard deviations of errors cient. As with the non-hidden node network analy- 
were calculated from the helix- and strand-content sis, the average of the 104 sets of coeilicients was 
predictions after treating each extracted example as almost identical with the set of coefficients obtained 
a true testing example. This procedure resulted in a after performing m.1.r. on all the samples in 
set of 46 network weights for each of the 104 pro- OPTBASE. These average coefficients achieve 
teins in OPTBASE. The average of these weight sets prediction errors of 98% (a = 7.8) and 6.994, 

(Fig. 5) was used for the evaluation on EVALBASE 
proteins. As expected, this average weight set was 
almost identical with the weight set obtained after 
training on all the examples in OPTBASE. 

The non-hidden node network prediction errors. 
after considering every example in OPTBASE as a 
true testing example (i.e. the jack-knife training of 
OPTBASE), were 12.5% ((T= l(b9) and 9.6?<, 
(CJ = 8.7) for helix- and strand-content predictions. 
respectively. On EVALBASE, the average non 
hidden node network weights (Fig. 5) achieved 
prediction errors of 11.8 y. (g = 9.8) and F).riqi, 
(0 = 4.1) for helix- and strand-content predictions, 
respectively. 
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Figure 5. The average of the non-hidden-node network weight sets obtained by performing a jack-knife procedure on 
the examples in OPTBASE. Filled bars indicate network weights connecting input elements to the helix output node, 
and open bars indicate weights to the strand output node. Ordered horizontally are the one-letter amino acid codes in 
decreasing hydrophobicity, molecular weight (mol. wt.), and heme presence (Heme). These weights will achieve errors of 
95% (a= 7.5) and 7.4% (Q= 5%) for helix and strand composition predictions, respectively, on the examples in 
OPTBASE, and lIQ3% (o = 9%) and 95% (a = 41) for helix and strand composition predictions, respectively, on the 
examples in EVALBASE. 

(0 = 6.1) for helix- and strand-content predictions, 
respectively, on the examples in OPTBASE. 

The prediction errors of the m.1.r. analysis 
treating every example in OPTBASE as a true 
t’esting example (i.e. the jack-knife m.1.r. analysis) 
were 12.9% (a = 11.1) for helix- and 90% (a = 8.5) 
for strand-content predictions. Using the average 
m.1.r. coefficients (eqns (14) and (15)) on 
EVALBASE, the average prediction errors were 
128% (cr= 11.1) and 166% (0=4*6) for helix- and 
strand-content predictions, respectively. 

(e) Secondary structure predictions 

The method of Qian & Sejnowski (1988) was used 
to make secondary structure predictions on the 
examples in EVALBASE. This method assumes 
that conformation of a central amino acid depends 
both on its identity and on its flanking amino acid 
sequence (+6 residues). Qian h Sejnowski (1988) 
used a database very similar to our OPTBASE to 
derive their network weights without including any 
examples similar to those in EVALBASE. Their 
method appears to be one of the better secondary 
structure prediction methods (Garnier, 1990). Using 
this method, predicted secondary structure 

elements were counted and normalized to make an 
indirect prediction of secondary structure content. 
It should be noted that the indirect helix-content 
predictions utilizing the neural network of Qian & 
Sejnowski (1988) included only a-helix elements, 
whereas the previously described methods included 
both a- and 3,0-helix elements in the prediction of 
helix content. 

The average prediction errors for this counting 
method on the proteins in OPTBASE were 12.5% 
(0 = 12.0) and 162% (a = 92) for helix- and strand- 
content predictions, respectively, whereas the 
average prediction errors on proteins in 
EVALBASE were 11.9% (a= 7.0) and 86% 
(0 = 7.7) for helix- and strand-content predictions, 
respectively. 

4. Discussion 

As seen in Table 3, the average secondary struc- 
ture content differences after counting the assign- 
ments by the authors and by DSSP for 80 of the 104 
proteins in OPTBASE are 5.2 y. and 44 y. for helix- 
and strand-content, respectively. Clearly, there is a 

degree of uncertainty in secondary structure assign- 
ment, even with known protein structures. Indeed, 
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Figure 6. The average input-to-hidden weights at various points of NET1 training. Weights connecting input,-to- 
hidden nodes ( WtlJiji) were averaged for each input node in PJETl after 200, 300, 400, 600, 1100, 1700 and 2000 
training iterations on examples in OPTBASE. Amino acid composition is represented with the respective one-letter codes 
W, I, Y, etc., the molecular weight with mol. wt., and Heme presence or absence with Heme. 

if a method of predicting secondary structure 
content performs with average errors in the range of 
0 to 10% (lo) for both helix and strand content, 
then the method will approach the uncertainty asso- 
ciated with secondary structure assignment. 

The performances of all four methods are 
summarized in Table 6. While the non-hidden-node 
network performs slightly better than the m.1.r. 
coefficients, both performances still border outside 
the acceptable (0 to 10%) error range. The COUNT 
method, which considers local sequence informa- 
tion, performs better than both the m.1.r. and non- 

Table 6 
Comparison of secondary structure predictions for the 

15 proteins in E VALBASE 

Structure COUNT m.1.r. NHN TN 

Helix, x ((r) Il.9 (7.0) 12.8 (11.1) 11.8 (9%) 50 (34) 
Strand 8.6 (7.7) 10% (4%) 9.5 (41) 5.6 (4.9) 

Under COUNT, the secondary structure composition was 
computed by counting the secondary structure elements 
determined by the method of Qian & Sejnowski (1988). Under 
m.1.r. (multiple linear regression), NHN (non-hidden-node 
network, 22 : 0 : 2), and TN (tandem networks 22 : 8 : 2 19 : 10 : 2, 
i.e. NET1 + NET2), secondary structure composition was 
calculated directly from amino acid composition, molecular 
weight and heme presence. Average and standard deviation 
(enclosed in parentheses) of errors between prediction and 
assignment by DSSP (Kabsch & Sander, 1983) of secondary 
structure composition are tabulated in percent. 

hidden-node network analysis; but because of the 
inaccuracies associated with secondary structure 
prediction, the COUNT method also borders outside 
the acceptable error range. The tandem network 
method clearly outperforms the three other methods 
with prediction errors as low as those errors asso- 
ciated with secondary structure assignment. 

A physical basis for the success of secondary 
structure content predictions can be derived from 
an analysis of the prediction parameters. While we 
can directly interpret the non-hidden-node network 
weights and the m.1.r. coefficients, hidden-node 
networks are less conducive to such analyses. We 
can, however, compare input-to-hidden-node 
weights in hidden-node networks to determine the 
relative contribution of each input element. 

The non-hidden-node network weights in Figure 6 
reveal an ambivalence to molecular weight informa- 
tion, though strand content seems a bit more 
influenced by molecular weight information than 
helix content. Equations (14) and (15) are similar in 
this sense. Though molecular weight information 
appears to have little effect on the non-hidden-node 
network weights and the m.1.r. coefficients, the 
weights that connect the molecular weight input-to- 
hidden-nodes in NET1 during its training appear to 
contribute as much information as the other input- 
to-hidden weights (see Fig. 6). In fact, the average 
weights assigned to molecular weight information 
are actually greater than those considering Trp, Tle, 
Phe, Met, Ala, His, Gln and Arg compositions. That 
is, molecular weight information has just as much 
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influence on protein secondary structure content as 
many of the amino acid compositions. Also note 
that, as shown in Figure 6, the average weights to 
molecular weight information change very little 
throughout the process of training NETl. This 
suggests that the influence of molecular weight was 
learned early in NET1 network training without 
changing as more specific rules were encompassed. 

For globular proteins, molecular weight is corre- 
lated directly to size and accessible surface area 
(Chothia, 1975; Janin, 1976). Therefore, given the 
amino acid distribution and molecular weight of a 
protein, much can be inferred about its size and 
shape; but for a method to consider the effects of 
protein size along with the quantities of each amino 
acid, it would have to possess the ability to learn 
from “higher-order information”, or combinations 
of informational elements. The techniques of m.1.r. 
and non-hidden-node networks do not possess this 
ability. Hidden-node networks, on the other hand, 
do possess this ability. Indeed, it seems likely that 
the differences between the tandem network predic- 
tion errors and those of the three other methods in 
Table 6 are a result of the ability to capture higher- 
order information. 

In both the non-hidden-node network and the 
m.1.r. analyses. the coefficients on presence or 
absence of a heme group are quite large relative to 
the other coefficients. As with molecular weight 
informat’ion, the heme input-to-hidden weights in 
NET1 appear to contribute a great deal of informa- 
tion (see Fig. 6). In fact, the average input-to- 
hidden weights to heme have greater influence than 
most of the amino acid compositions (exceptions are 
Leu and Pro). The m.1.r. coefficients directly suggest 
that the presence of a heme group increases helix 
content by SSq/,. This is consistent with optical 
rotatory dispersion experiments, which have 
indicated that apomyoglobin has approximately 
20% less helix content than myoglobin (Harrison & 
Blout, 1965; Expand & Scheraga, 1968; Hermans & 
Puett, 1971). Likewise, the loss of a heme group 
from cytochrome c has been shown to disrupt the 
protein structural integrity altogether (Dickerson & 
Timkovich, 1975). 

Heme groups occur in hemoglobins, b-type and 
c-type cytochromes, and catalases and peroxidases 
(Schulz & Schirmer, 1988). In hemoglobins, the 
function of the heme group and surrounding peptide 
chain is to protect the liganded ferrous ion from 
oxidation and to give iron its O,-binding properties 
(Wang, 1970), whereas cytochromes use the 
Fe3+/Fe’+ redox system within the heme group for 
electron transport (Dickerson & Timkovich, 1975). 
For both of these proteins, the heme group sits in a 
crevice lined with apolar amino acids. In cyto- 
chrome C3 molecules (lCY3 and ZCDV), over 20 
amino acids interact with a single heme group 
(Dickerson & Timkovich, 1975), and in one subunit 
of hemoglobin there are some 60 atoms making van 
der Waals’ contacts with the porphyrin ring of the 
heme group (Perutz, 1970). 

Clearly, the presence or absence of a heme group 

has a significant effect on structure and function of 
a protein. The non-hidden-node network weights, 
m.1.r. coefficients and the hidden-node network 
weights all seemed to capture t,he relationship 
between presence of a heme group and secondary 
structure content of the protein. Perhaps further 
functional information combined with amino acid 
composition and molecular weight will improve 
prediction performances. 

In general, the weights in Figure 5 and equations 
(14) and (15) suggest that hydrophobic residues 
appear more influential on helix content and hydro- 
philic residues appear more influential on strand 
content. Similar to their helix propensities (Chou & 
Fasman, 1974), Leu contributes strongly towards 
helix content and Pro strongly against (Fig. 5). Also 
note that, as shown in Figure 6, Leu and Pro have 
the largest input-to-hidden weights throughout the 
NET1 training. Indeed, the properties of Leu and 
Pro are quite significant in the formation/disruption 
of protein secondary structure. It should be empha- 
sized that the average input-to-hidden weights in 
Figure 6 only suggest which informational elements 
contribute more than others. Because the hidden-to- 
output weights further complicate the picture, at 
present no hard and fast rules relating input-to- 
output information can be extracted from hidden- 
node networks. 

From Figure 5 and equations (14) and (15), the 
residues contributing most strongly to strand 
formation are His, Thr, Glu, Ser and Pro. With the 
exception of Thr, these residues do not have large 
strand propensities (Chou & Fasman, 1974). In 
general, the non-hidden-node network weights in 
Figure 5 and the coefficients in equations (14) and 
(15) have little correlation with the helix and strand 
propensities (Chou & Fasman, 1974) of the respec- 
tive amino acid residues (the correlation between 
Chou-Fasman propensities and our non-hidden- 
node network weights are 642 and -0.19 for helix 
and strand, respectively). One explanation for these 
low correlation values is that, unlike the statistics 
describing helix and strand propensities, these 
methods relate global amino acid composition to 
global secondary structure content. Whereas most 
probabilistic methods utilize secondary structure 
propensities of amino acids in their local context, 
our m.1.r. coefficients and non-hidden-node network 
weights will consider the effects of all the amino acid 
residues working together, both locally and 
globally, to build a particular amount of each 
secondary structure. 

Because of the complexity of hidden-node 
networks (eqns (3) to (5)), any further weight inter- 
pretation is beyond the scope of our present 
capabilities. Coupled with the effects of memoriza- 
tion, it seems very unlikely that a complete physical 
interpretation can be made from the weights 
contained within NET1 +NETZ. Tndeed, this is 
perhaps the most disappointing feature of neural 
network application, a highly successful prediction 
without the luxury of a comprehensive explanation. 
Despite our inability to explain completely the 
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Figure 7. The root-mean-square (r.m.s.) difference 
between successive weight sets in NET1 training pro- 
cedure (solid line) and the totalerror over examples in 
OPTBASE (broken line). Weights were compared after 
every 10 training iterations. The complete set of proteins 
in OPTBASE was used in network training. 

success of our prediction method, we can report 
with confidence that amino acid composition, 
molecular weight and presence or absence of a heme 
group are correlated strongly with protein 
secondary structure content. 

While our tandem network approach is highly 
accurate, it may appear that the total number of 
parameters is large. Given a NET2 architecture of 
9 : 10 : 2 (122 weights) plus multiple sets of NET1 
architectures of 22 : 8 : 2 (202 weights) representing 
60 stages of training (between 200 and 2000 
iterations with steps of 30-+60 stages) will result in 
over 12,200 parameters! With only 104 proteins, 
this may appear to be an exorbitant number of 
parameters. 

Recall, however, that we generated over 9000 
examples for the NET2 training. This decreases the 
ratio of observations to prediction parameters. Also, 
the weights sets representing a stage of NET1 
training are not independent. As seen in Figure 7. 
the r.m.s. deviation of weight sets between 
training epochs (10 iterations per epoch) approaches 
0.0 quite smoothly with some spiked feature. The 
largest, output activities of NET2 (i.e. NET1 
predicted to be in its greatest state of general- 
ization) often occurred on one of the peaked epochs 
in Figure 7. Because choices made by NET2 often 
fell on one of these spikes, the overall parameter set 
can be drastically reduced. Regardless of the ratio 
between observations and parameters, however, our 
tandem network method demonstrated highly 
accurate predictions on examples quite different 
from those used in network optimizations. Indeed. 
our tandem network approach truly demonstrated 
inductive learning. 

5. Conclusion 

The results of our experiments have demon- 
strated good accuracies in predicting secondary 
structure content. We have compared four methods, 
including a tandem neural network approach, a 
non-hidden-node network analysis, a multiple linear 
regression analysis and structural element count, 

after a local secondary structure prediction. Our 
tandem neural network approach outperformed the 
three other methods with prediction errors as low as 
5.0% and 56% for helix and strand content, 
respectively. These average prediction errors are as 
low as those associated with secondary structure 
assignment. 

An interesting implication of this mapping is 
that, although amino acid sequence is important foI 
local secondary structure predictions, amino acid 
composition is a more important determinant of 
secondary structure content. For a protein of N 
residues and Di copies of amino acid i, a single 
composition of amino acids will have N!/&Di! 
possible sequences. In this vast sequence space, only 
a small number of sequences will likely fold into 
compact three-dimensional structures. Our mapping 
suggests that all those sequences that fold will 
contain the same quantity of secondary structure. 
the implication being that the amino acid sequence 
determines whether or not a protein will fold and 
the amino acid composition determines the final 
quantity of secondary structure. 

One practical application of this mapping is for 
improving secondary structure prediction. Garnier 
(1978) demonstrated an increase in secondary strut- 
ture prediction given knowledge of secondary struts- 
ture content. Recently, Kneller ef al. (1990) 
demonstrated a marked increase in secondary struc- 
ture prediction when they considered tertiary struc- 
tural class. Their best prediction increases were for 
all a- and all p-proteins and less so for a//? proteins. 
All a- and all fl-poteins can be classified as such if 
our method suggests high helix and high strand 
respectively. Therefore, after combining our method 
with other existing methods of secondary structurfx 
prediction, it, is likely that secondary structure 
prediction accuracies will increase. 
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