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1. Introduction

The prediction of protein structure from amino acid sequence has become
the Holy Grail of computational molecular biology. Since Anfinsen [1973]
first noted that the information necessary for protein folding resides com-
pletely within the primary structure, molecular biologists have been fascinat-
ed with the possibility of obtaining a complete three-dimensional picture of a
protein by simply applying the proper algorithm to a known amino acid se-
quence. The development of rapid methods of DNA sequencing coupled
with the straightforward translation of the genetic code into protein se-
quences has amplified the urgent need for automated methods of interpreting
these one-dimensional, linear sequences in terms of three-dimensional struc-
ture and function.

Although improvements in computational capabilities, the development of
area detectors, and the widespread use of synchrotron radiation have reduced
the amount of time necessary to determine a protein structure by X-ray crys-
tallography, a crystal structure determination may still require one or more
man-years. Furthermore, unless it is possible to grow large, well-ordered



crystals of the protein of interest, X-ray structure determination is not even
an option. The development of methods of structure determination by high
resolution 2-D NMR has alleviated this situation somewhat, but this tech-
nique is also costly, time-consuming, requires large amounts of protein of
high solubility and is severely limited by protein size. Clearly, current exper-
imental methods of structure determination will not be able to cope with the
present and future need for protein structure determination.

Efforts toward protein structure prediction have come from two general
directions and their hybrids. The first, a molecular mechanics approach, as-
sumes that a correctly folded protein occupies a minimum energy conforma-
tion, most likely a conformation near the global minimum of free energy.
Predictions are based on a forcefield of energy parameters derived from a va-
riety of sources including ab initio and semi-empirical calculations and ex-
perimental observations of amino acids and other small molecules [Weiner,
et al 1984]. Potential energy is obtained by summing the terms due to bond-
ed (distance, angle, torsion) and non-bonded (contact, electrostatic, hydrogen
bond) components calculated from these forcefield parameters [Weiner &
Kollman, 1981]. This potential energy can be minimized as a function of
atomic coordinates in order to reach the nearest local minimum. This method
is very sensitive to the protein conformation at the beginning of the simula-
tion. One way to address this problem is use molecular dynamics to simulate
the way the molecule would move away from that (usually arbitrary) initial
state. Newton’s equations of motion are used to describe the acceleration of
atoms in a protein with respect to time; the movement in this simulation will
be toward low energy conformations. The potential energy of the molecule
can also be minimized at any point in a dynamics simulation. This method
searches a larger proportion of the space of possible confirmations.

Nevertheless, only through an exhaustive conformation search can one be
insured to locate the lowest energy structure. Even restricting the representa-
tion of a confirmation of a protein as much as possible, to only a single point
of interest per amino acid and two angles connecting the residues, the combi-
natorial aspect of an exhaustive search lead to difficult computational prob-
lems [Wetlaufer, 1973]. Under the further simplification of restricting each
atom in the protein chain to a discrete location on a lattice [Covell & Jerni-
gan, 1990] and searching the conformation space with very simple energy
equations, the exhaustive search method is feasible for only small proteins.
Alternatively, conformational space may be sampled randomly and sparsely
by monte carlo methods with the hope that a solution close enough to the
global energy minimum will be found so that other methods will be able to
converge to the correct conformation. Given an approximately correct model
from either monte carlo searches or other theoretical or experimental ap-
proaches, the technique of molecular dynamics has become the method of
choice for refinement, or improvement, of the model. This approach allows
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the moving molecule to overcome some of the traps of local energy minima
in its search for a global minimum.

In general, the energetics approach of molecular mechanics is fraught
with problems of inaccurate forcefield parameters, unrealistic treatment of
solvent, and landscapes of multiple minima. It appears that this direction will
be most valuable in combination with other methods which can provide an
approximate starting model. 

The second major focus of research toward predicting protein structures
from sequence alone is a purely empirical one, based on the databases of
known protein structures and sequences. This approach hopes to find com-
mon features in these databases which can be generalized to provide struc-
tural models of other proteins. For example, the different frequencies at
which various amino acid types occur in secondary structural elements; he-
lices, strands, turns and coils, has led to methods [Chou & Fasman, 1974a;
Chou & Fasman, 1974b; Garnier, Osguthorpe & Robson, 1978; Lim, 1974a;
Lim, 1974b] for predicting the location of these elements in proteins. Even
more powerful and now widely used is the prediction of tertiary structure by
sequence homology or pattern matching to previously determined protein
structures [Blundell, Sibanda & Pearl, 1983; Greer, 1981; Warme, et al,
1974] or structural elements, such as zinc binding fingers, helix-turn-helix
DNA binding motifs and the calcium binding EF hand. A portion of a target
protein that has a sequence similar to a protein or motif with known structure
is assumed to have the same structure. Unfortunately, for many proteins there
is not sufficient homology to any protein sequence or sub-sequence of known
structure to allow application of this technique. Even proteins thought to
have similar structures on functional grounds may show such little sequence
similarity that it is very difficult to determine a proper sequence alignment
from which to propose a molecular model.

Thus, an empirical approach, which derives general rules for protein
structure from the existing databases and then applies them to sequences of
unknown structure currently appears to be the most practical starting point
for protein structure prediction. Various methods have been used for extract-
ing these rules from structural databases, ranging from visual inspection of
the structures [Richardson, 1981], to statistical and multivariate analyses
[Chou & Fasman, 1974; Krigbaum & Knutton, 1973]. Recently, artificial
neural networks have been applied to this problem with great success [Crick,
1989]. These networks are capable of effecting any mapping between protein
sequence and structure, of classifying types of structures, and identifying
similar structural features from a database. Neural network models have the
advantage of making complex decisions based on the unbiased selection of
the most important factors from a large number of competing variables. This
is particularly important in the area of protein structure determination, where
the principles governing protein folding are complex and not yet fully under-

HOLBROOK, MUSKAL & K IM 163



stood. The researcher is then able to explore various hypotheses in the most
general terms, using the neural network as a tool to prioritize the relevant in-
formation.

The remainder of this review will discuss neural networks in general in-
cluding architecture and strategies appropriate to protein structure analysis,
the available databases, specific applications to secondary and tertiary struc-
ture prediction, surface exposure prediction, and disulfide bonding predic-
tion. Finally, we will discuss the future approaches, goals and prospects of
artificial neural networks in the prediction of protein structure.

2. Artificial Neural Networks

Artificial neural networks appear well suited for the empirical approach to
protein structure prediction. Similar to the process of protein folding, which
is effectively finding the most stable structure given all the competing inter-
actions within a polymer of amino acids, neural networks explore input in-
formation in parallel. . Inside the neural network, many competing hypothe-
ses are compared by networks of simple, non-linear computation units.
While many types of computational units exist, the most common sums its
inputs and passes the result through some kind of nonlinearity. Figure 1 illus-
trates a typical computational node and three common types of nonlinearity;
hard limiters, sigmoidal, and threshold logic elements. Nearly every neural
network model is composed of these types of computational units. The main
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Figure 1: A computational node represented as a circle with weighted inputs and out-
put shown as arrows.  The formula for summation of weighted input and bias (b) is
given, as well as three common functional forms of nonlinearity which may be used
by the node to determine output
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differences exist in topology (node connectivity), methods of training, and
application. This article will focus primarily on one type of network, the
feedforward network trained with backpropagation for rule extraction pur-
poses. Networks are termed feedforward because information is provided as
input and propagated in a forward manner, with each computational unit in-
tegrating its inputs and “firing” according to its non-linearity. The following
sections will describe in more detail the characteristics of feedforward net-
works, the preferred method of training with backpropagation, and useful
techniques for network optimization.

2.1 Feedforward Networks

A typical feed-forward network is depicted in Figure 2. These networks
are often composed of two to three layers of nodes; input and output or input,
hidden, and output. Each network has connections between every node in
one layer and every other node in the layer above. Two layer networks, or
perceptrons, are only capable of processing first order information and con-
sequently obtain results comparable to those of multiple linear regression.
Hidden node networks, however, can extract from input information the
higher order features that are ignored by linear models.

Feedforward networks are taught to map a set of input patterns to a corre-
sponding set of output patterns. In general, a network containing a large
enough number of hidden nodes can always map an input pattern to its corre-
sponding output pattern [Rumelhart & McClelland, 1986]. Once such net-
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Figure 2.  A three layer  feedforward neural network.  The circles represent the com-
putational nodes which integrate input from the preceding layer and transmit a sig-
nal to the next layer.  Arrows represent weighted links (connections) between these
nodes which modulate incoming signals.  The three layer network presented is the
most common, but additional layers are possible.

Output Units

Hidden Units

Input Units



works learn this mapping for a set of training patterns, they are tested on ex-
amples that are in some way different from those used in training. While
most feedforward networks are designed to maximize generalization from
training examples to testing examples, some networks are intentionally
forced to memorize their training examples. Such networks are then tested
with either an incomplete or subtly different pattern. The output of the net-
work will be the memory that best matches the input.. 

2.2 Training Procedure

The process of training a feedforward network involves presenting the
network with an input pattern, propagating the pattern through the architec-
ture, comparing the network output to the desired output, and altering the
weights in the direction so as to minimize the difference between the actual
output and the desired output. Initially however, the network weights are ran-
dom and the network is considered to be ignorant. While many algorithms
exist for training, clearly the most frequently used technique is the method of
backpropagation [Rumelhart, Hinton & Williams, 1986]. Backpropagation
involves two passes through the network, a forward pass and a backward
pass. The forward pass generates the network’s output activities and is gener-
ally the least computation intensive. The more time consuming backward
pass involves propagating the error initially found in the output nodes back
through the network to assign errors to each node that contributed to the ini-
tial error. Once all the errors are assigned, the weights are changed so as to
minimize these errors. The direction of the weight change is:

(1)

where Wij is the weight from node i to node j, ν is a learning rate, δj is an
error term for node j, Oi is either the output of node i or an input value if
node i is an input node. If the node j is an output node, then

(2)

with

(3)

where Fj
’ (netj) is the derivative of the nonlinear activation function which

maps a unit’s total input to an output value,Tj is the target output of the out-
put node and Oj is the actual output. If node j is an internal hidden node, then

(4)

The weight change as described in Equation 1 can be applied after each
example, after a series of examples, or after the entire training set has been
presented. Often momentum terms are added and weight changes are
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smoothed to effect faster convergence times. Regardless of the training
recipe however, the main goal of the network is to minimize the total error E
of each output node j over all training examples p:

(5)

2.3 Network Optimization
Because the rules in most input-output mappings are complex and often

unknown, a series of architecture optimizing simulations are required when
testing each hypothesis. Examples of such optimizing experiments include
varying input representation, numbers of hidden nodes, numbers of training
examples, etc. In each case, some measure of network performance is evalu-
ated and tabulated for each network architecture or training condition. The
best performing network is chosen as that which performs the best on both
the training and testing sets. 

With networks containing hidden nodes, training algorithms face the
problem of multiple-minima when minimizing the output error across all
training patterns. If the error space is rugged, as is often the case in hidden
node networks, the multiple-minima problem can be a serious one. To com-
bat this problem, researchers often permute their training and testing sets and
train a number of times on each set, while reporting the best performing net-
work for each simulation. The variance between training and testing sets as
well as between training sessions helps to describe the complexity of the
weight space as well as the input-output mapping. 

Generally smooth trends in performance levels immediately point to opti-
mal network architectures. One nuisance to those who are designing net-
works to generalize from training examples to testing examples, however, is
the concept of memorization or overfitting: the network learns the training
examples, rather than the general mapping from inputs to outputs that the
training set exemplifies. Memorization reduces the accuracy of network gen-
eralization to untrained examples. Sure signs of undesired memorization be-
come apparent when the network performs much better on its training set
than on its testing set; and typically, this results when the network contains
far more weights than training examples. When undesired memorization re-
sults, the researcher is forced to increase the numbers of training examples,
reduce node connectivity, or in more drastic situations, reduce the number of
input, hidden, and/or output nodes. Increasing the number of training exam-
ples is by far the best remedy to the effects of memorization. But more often
than not, especially in the area of protein structure prediction, one is con-
strained with a relatively small database. If it is not possible to increase the
database of training examples, the next best choice is to reduce the network
connectivity. This, however, poses the problem of deciding on which connec-
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tions to remove. Here, some have tried removing those connections that are
used the least or that vary the most in the training process. This process of
network pruning, however, often slows the already lengthy training process
and should be done with caution. Finally, reducing the number of network
nodes is the least desirable of all approaches since it often results in hiding
key information from the network, especially if the number of input nodes is
reduced. Similarly, reducing the number of hidden nodes often results in un-
acceptable input-output mappings; while reducing the number of output
nodes, often results in mappings that are no longer useful. Clearly, undesired
memorization is one of the greatest drawbacks with neural network comput-
ing. Until methods for alleviating the problem are developed, researchers are
forced to be clever in their design of representations and network architec-
ture.

Feedforward neural networks are powerful tools. Aside from possessing
the ability to learn from example, this type of network has the added advan-
tage of being extremely robust, or fault tolerant. Even more appealing is that
the process of training is the same regardless of the problem, thus few if any
assumptions concerning the shapes of underlying statistical distributions are
required. And most attractive is not only the ease of programming neural net-
work software, but also the ease with which one may apply the software to a
large variety of very different problems. These advantages and others have
provided motivation for great advances in the arena of protein structure pre-
diction, as the following sections suggest.

2.4 Protein Structure and Sequence Databases

Application of an empirical approach to protein structure prediction is en-
tirely dependent on the experimental databases which are available for analy-
sis, generalization and extrapolation. Since all of the studies discussed below
are dependent on these databases, a brief discussion of their contents is ap-
propriate.

The Brookhaven Protein Data Bank [Bernstein et al, 1977], or PDB, cur-
rently (April, 1990) contains atomic coordinate information for 535 entries.
These entries are primarily determined by X-ray crystallography, but some
more recent entries are from two-dimensional NMR and molecular modeling
studies. Of the 535 entries, 37 are nucleic acids, 10 are polysaccharides and
27 are model structures. Of the remaining entries many of the proteins are es-
sentially duplicated, with either minor amino acid changes due to biological
source or specific mutation or with different ligands bound. Taking these fac-
tors into account, one can estimate that the Protein Data Bank, currently con-
tains 180 unique protein coordinates sets. Besides the x, y, z coordinates of
the non-hydrogen atoms of the proteins and bound co-factors, the following
information is included in the Protein Data Bank entries: protein name, a list
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of relevant literature references, the resolution to which the structure was de-
termined, the amino acid sequence, atomic connectivity, the researcher’s
judgement of secondary structure and disulfide bonding pattern, and also
may contain atomic temperature factors (measure of mobility), coordinates
of bound water molecules and other ligands, a discussion of the refinement
scheme and its results (estimate of error), and other miscellaneous comments
the depositors may wish to make.

In addition to the information directly available from the PDB several
computer programs are available both through Brookhaven and from exter-
nal sources for calculation of additional structural parameters from the en-
tries. These programs calculate such values as the main chain conformational
angles phi and psi, the side chain torsion angles, the surface area accessible
to a water molecule, distances between all residue pairs in the form of a ma-
trix and may also make automatic assignments of disulfide bonds, secondary
structure and even super-secondary structure folding patterns. The most
widely used of these programs and the one employed for most of the neural
network studies is the DSSP program of Kabsch and Sander [Kabsch &
Sander, 1983].

Because of the difficulty of the experimental methods of protein structure
determination, the number of known three-dimensional protein structures is
much less than the number of protein sequences which have been deter-
mined. It is vital, then, to merge this information together with the structural
information of the PDB in attempts to predict protein structure. The Protein
Identification Resource [George, et al, 1986] or PIR, as of December 31,
1989 contained 7822 protein sequences consisting of 2,034,937 residues. The
amino acid sequences of these proteins were determined either by chemical
sequencing methods or inferred from the nucleic acid sequences which code
for them. The PIR database contains, in addition to amino acid sequence, in-
formation concerning the protein name, source, literature references, func-
tional classification and some biochemical information.

An even larger database of sequences is found in the GENBANK collec-
tion of nucleic acid sequences. Many of these sequences code for proteins
whose sequences may be obtained by a simple translation program. The nu-
cleic acid sequences which code for proteins may eventually become the
source for additional entries in the PIR, but because of the rapid growth of
both the GENBANK and PIR databases there currently is a large backlog of
sequences to be added to these data banks.

A variety of computer programs also are available for analysis of the pro-
tein sequence database, the PIR. These programs include those which calcu-
late amino acid composition, search for sequence similarity or homology,
conserved functional sequences, plot hydrophobicity and predict secondary
structure.
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3. Secondary Structure Prediction with Neural Networks

At present, the largest application of feedforward neural networks in the
world of protein structure prediction has been the prediction of protein sec-
ondary structure. As secondary structures (α-helices, β-strands, β-turns, etc)
are by definition the regions of protein structure that have ordered, locally
symmetric backbone structures, many have sought to predict secondary
structure from the sequence of contributing amino acids [Chou & Fasman,
1974a; Chou & Fasman, 1974b; Garnier, Osguthorpe & Robson, 1978; Lim,
1974a; Lim, 1974b[. Recently though, Qian and Sejnowski (1988], Holley
and Karplus [1989], Bohr et al. [1988], and McGregor et al. [1989] have ap-
plied neural network models to extract secondary structural information from
local amino acid sequences and have achieved improved secondary structure
prediction levels over that derived by statistical analysis [Chou & Fasman,
1974a; Chou & Fasman, 1974b].

3.1 α-Helix, β-Strand, and Coil Predictions
The general hypothesis taken when attempting to predict secondary struc-

ture is that an amino acid intrinsically has certain conformational preferences
and these preferences may to some extent be modulated by the locally sur-
rounding amino acids. Using this information, network architectures of the
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Figure 3: A feedforward neural network of the type used by Qian and Sejnowski
[1988] for the prediction of secondary structure from a window of input amino acid
sequence.  Active nodes are shaded and the connections between each node and all
other nodes above it are illustrated schematically by arrows.  Only 5 input nodes are
shown for each amino acid although 21 were used.



type in shown in Figure 3 have been designed to predict an amino acid’s sec-
ondary structure given the sequence context with which it is placed.

Qian and Sejnowski [1988] and others [Holley & Karplus 1989; Bohr et
al. 1988] have shown that a locally surrounding window of amino acids does
improve prediction levels as shown in Table 1. This table indicates that when
the size of the window was small, the performance on the testing set was re-
duced, suggesting that information outside the window is important for pre-
dicting secondary structure. When the size of the window was increased be-
yond 6 residues on each side of a central residue, however, the performance
deteriorated. Therefore, when using only local sequence information,
residues beyond 6 residues in each direction contribute more noise than in-
formation in deciding a central amino acid’s secondary structure.

Further attempts at improving prediction levels by adding a variable num-
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Window Size Q3(%) Cα Cβ Ccoil

1 53.90 0.11 0.14 0.17
3 57.70 0.22 0.20 0.30
5 60.50 0.28 0.26 0.37
7 61.90 0.32 0.28 0.39
9 62.30 0.33 0.28 0.38
11 62.10 0.36 0.29 0.38
13 62.70 0.35 0.29 0.38
15 62.20 0.35 0.31 0.38
17 61.50 0.33 0.27 0.37
21 61.60 0.33 0.27 0.32

Table 1: Dependence of testing accuracy on window size (adapted from Qian & Se-
jnowski, 1988).  Q3 is average percent correct over three predicted quantities (α, β,
coil). C is  correlation coefficient  for each prediction type, as defined by Mathews
[1975].

Hidden Units Q3(%)

0 62.50
5 61.60
10 61.50
15 62.60
20 62.30
30 62.50
40 62.70
60 61.40

Table 2: Testing of secondary structure prediction versus number of hidden nodes.
(adapted from Qian & Sejnowski, 1988)



ber of hidden nodes as seen in Table 2 were only slightly successful. In fact,
the best performing network containing 40 hidden nodes offers only a small
improvement over the network containing 0 hidden nodes. This result sug-
gests that the mapping between flanking amino acid sequence and an amino
acid’s secondary structure is of first order, requiring little if any higher order
information (information due to interactions between 2 or more residues in
the input sequence).

Further studies showed the maximum performance of the network as a
function of the training set size as seen in Figure 4. The maximum perfor-
mance on the training set decreases with the number of amino acids in the
training set because more information is being encoded in a fixed set of
weights. The testing set success rate, however, increases with size because
the larger training set increases the network’s generalization ability. Figure 4
nicely depicts the concept of memorization. When the training set is small,
the network can memorize the details and suffers on the testing set. When the
training set is large, memorization is not possible and generalization is
forced. Furthermore, Figure 4 suggests that any additional increase in the
size of the training set is unlikely to increase the network’s testing perfor-
mance, implying that more information for predicting secondary structure is
required than that contained in a window of 13 consecutive amino acids.
This missing information is undoubtedly in the tertiary contacts between
residues in the proteins. The three-dimensional fold of the protein chain en-
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velopes most of the amino acids in a unique environment, thus modifying
their inherent tendencies toward a particular secondary structure. A predic-
tion limit is therefore approached when only local sequence information is
available.

The performance of Qian and Sejnowski’s network compared to those
prediction methods of Garnier et. al. [1978], Chou & Fasman [1974b], Lim
[1974], and Holley & Karplus [1989] is shown in Table 3. Clearly, the neural
networks out-perform those methods of the past. Approximately 1% of the
11% improvement in Table 3 between Garnier’s method and the neural net-
work method is attributed to the difference between the network’s training
set and the set of proteins used to compile Garnier’s statistics.

One benefit of using networks containing no hidden nodes is the ease with
which the network weights can be interpreted. While Sanger [Sanger, D.,
Personal Communication] has developed a method of weight analysis for
hidden node networks called contribution analysis, the technique is still in its
infancy. Until more researchers turn to this or other methods of hidden node
network weight analysis, graphical representations of the weights from input
to output nodes will have to suffice.

Figure 5 details the relative contribution to the decision of a secondary
structure made Qian and Sejnowski’s network for each amino acid at each
window position. Here, correlations between each amino acid’s sequence
specific secondary structure preference and its physical properties can be
readily extracted.

In a parallel study to that of Qian and Sejnowski, Holley and Karplus
[1989] have designed a similar network for prediction of secondary structure.
Their optimal network contains an input layer of 8 amino acids on either side
of the residue of interest (window size equals 17), a hidden layer of two
nodes and an output layer of two nodes. The two node output layer describes
three states: helix, strand and coil by taking on values of 1/0, 0/1 and 0/0 re-
spectively. Since the actual values of these nodes lie between 0 and 1, a cut-
off value or threshold was determined which optimized the network predic-
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Method Q3(%) Cα Cβ Ccoil
Chou-Fasman 50.00 0.25 0.19 0.24
Garnier 53.00 0.31 0.24 0.24
Lim 50.00 0.35 0.21 0.20
Qian & Sejnowski - 1 62.70 0.35 0.29 0.38
Qian & Sejnowski - 2 64.30 0.41 0.31 0.41
Holley & Karplus 63.20 0.41 0.32 0.36

Table 3: Accuracy comparison of methods of secondary structure prediction. Qian &
Sejnowski  - 1 is their perceptron network, Qian & Sejnowski - 2 includes a smooth-
ing network using predictions from the first network as input.  See text.
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Figure 5: The relative values of the connection weights obtained by Qian and Se-
jnowski [1989] in their perceptron network for prediction of helix (a), strand (b) and
coil (c)  from amino acid sequence.  For each window position and amino acid type
the weight of its link to the next layer is represented as a shade of gray. Darker
shades indicate higher weights.  The amino acid residues in this and following simi-
lar figures are in order of decreasing hydrophobicity according to Eisenberg  [1984]
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tion. The maximum overall prediction accuracy on the training set was
63.2% (Table 3) over three states with Cα 0.41, Cβ 0.32 and Ccoil 0.36
which are very similar to the results discussed previously. They also noted an
increase in prediction accuracy for residues near the amino-terminus and for
highly buried versus partially exposed β-strands. Finally, residues with high-
er output activities were found to be more accurately predicted, i.e. the
strongest 31% of predictions were 79% correct. The Holley and Karplus per-
ceptron network has recently been implemented on an IBM-compatible mi-
crocomputer and shown to reproduce their results [Pascarella & Bossa,
1989].

Attempting to extend these studies, Bohr et al. [1988] designed three sep-
arate networks to predict simply if a residue was in a helix or not, strand or
not, and coil or not given a window of 25 residues on each side of a central
amino acid. Clearly, by the size of this network, memorization was in-
evitable. But they, as will be mentioned in their approach to tertiary structure
prediction, seem to desire memorization. In fact, their approach seems to
have led to a new measure of homology.

Again using a window of 25 residues on each side of a central amino acid,
but extending the output to α-helix, β-strand, and coil, Bohr et al. trained a
network similar to Qian and Sejnowski’s on one member of a homologous
pair of proteins. The percent performance on the other protein, then, indicat-
ed the degree of homology. In this way, Bohr et al. used to their advantage
the concept of network memorization to determine the degree of similarity
between protein sequences, without requiring any sequence alignment.

In a practical application of neural networks for the prediction of protein
secondary structure, a prediction of helix and strand location was made for
the human immunodeficiency virus (HIV) proteins p17, gp120 and gp41
from their amino acid sequences [Andreassen, et al, 1990]. The input layer
used an amino acid sequence window of 51 residues (1020 binary units) and
a hidden layer of 20 units. Separate networks were trained for α-helices and
β-strands and used in their prediction.

3.2 β-turn Predictions

In order for proteins to be compact, folded structures that pack their sec-
ondary structures into remarkably small volumes [Richardson, 1981; Rose,
1978], they must have a number of chain reversals. β-Turns are a specific
class of chain reversals localized over a four-residue sequence[Richardson,
1981; Venkatachalam, 1968] and are defined by having a distance between
Cα(i) and Cα(i+3) of < 7A. Seven classes (I,I’,II,II’,VIa,VIb,VIII) and a
miscellaneous category (IV) have been defined [Richardson, 1981; Venkat-
achalam, 1968; Lewis, Momany & Sheraga, 1973] and differ by hydrogen
bond interactions between involved residues. The most common classes of
turns being I and II (41 and 26% of all turns), for example, have a specific
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hydrogen bond interaction between the C=O of residue i and the N-H of
residue i+3.

Similar to the prediction of α-helices and β-strands, network predictions
for β-turns begin with the hypothesis that the information necessary to force
the sequence of amino acids into a β-turn exists locally in a small window of
residues. The network architecture designed to further this notion is depicted
in Figure 6. Once again, the input to the network encodes a string of amino
acids. The output classifies the sequence as one of four types, Type I, Type
II, Non-Specific, or Non-turn.

Because the window size is fixed at four by the definition of β-turns, the
only network optimizing simulations required were those that determine op-
timal numbers of hidden nodes. McGregor et al. [1989] have reported, as
shown in Table 4 a network performance with 0 (perceptron) and 8 hidden
nodes. Statistics were calculated for six different testing sets and the mean
value is indicated. Table 4 also compares the performance of these networks
to the method of Chou and Fasman [1974b]. The low values for the overall
prediction accuracy reflect the stringent requirement that all four residues in
the β-turn must be correctly predicted. On an individual residue basis, 71%
of the predictions are correct compared to a chance level of 58%.

A commonly occurring issue addressed in this paper is how to adjust the
relative ratio of the four different turn types (different outputs) in the training
set. Since the numbers of types of turns and non-turns differ considerably, it
was important to decide how frequently to sample each input type. Sampling
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Figure 6.  The network architecture used by McGregor, et al. for identification of β-
turns.  The input layer is a sequence of 4 amino acids comprising aβ-turn or non-turn
presented to the network as 20 nodes per amino acid.  The output layer has one node
per turn (or non-turn) type.  Shaded circles indicate activated nodes and dashed ar-
rows schematically represent the weighted links between all node.



of each type with equal frequency led to a large overdetermination of turns,
however if the sequences were sampled according to the frequency at which
they actually occur then all the predictions were for non-turns. The authors
finally used a trial and error approach, obtaining the best results by sampling
type I, II, non-specific turns and non-turns in the ratio 6:3:8:34, approximate-
ly the correct ratio except that the non-turns were reduced by a factor of six.
This biased distribution of examples may partially account for the low pre-
diction performance obtained with this network. 

3.3 Secondary Structure Composition Predictions

Given the above mentioned work, it appears that the information encoded
in small windows of local sequence is sufficient to correctly predict approxi-
mately two-thirds of a protein's secondary structure [Qian & Sejnowski,
1988; Holley & Karplus, 1989; McGregor, et al, 1989]. Because of this less
than satisfactory rate of prediction, many have sought to improve the accura-
cy of secondary structure predictions by adjusting predictions based on a
consensus of many predictive methods [Nishikawa & Ooi, 1986], the sec-
ondary structure of seemingly similar proteins [Nishikawa & Ooi, 1986;
Levin & Garnier, 1988; Zvelebil, et al, 1987], and an a priori knowledge of
secondary structure composition [Garnier, et al, 1978]. In attempts to predict
the latter, others have noted that there exists a correlation between secondary
structure composition and amino acid composition [Crick, 1989; Nishikawa
& Ooi, 1982; Nishikawa,et al, 1983].

Neural networks have recently been applied by Muskal and Kim [1992] to
the problem of mapping amino acid composition to secondary structure com-
position. They trained a network to map a string of real numbers representing
amino acid composition, molecular weight and presence or absence of a
heme cofactor onto two real valued output nodes corresponding to percent α-
helix and percent β-strand. A second, or tandem, network was used to detect
memorization and maximize generalization. 

Networks with and without hidden nodes were able to accurately map
amino acid composition to secondary structure composition. The correlations
between predicted and real secondary structure compositions for the net-
works containing no hidden nodes are quite similar to those obtained by
techniques of multiple linear regression [Krigbaum & Knutton, 1973; Horne,
1988] and by standard statistical clustering methods [Nishikawa & Ooi,
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Prediction Method % correct Cβ-turn
Perceptron 24.1 0.177
Hidden Layer Network 26.0 0.202
Chou-Fasman 20.6 0.167

Table 4: Statistics for β-turn prediction



1982; Nishikawa, et al, 1983], while those obtained with hidden node net-
works are considerably greater. 

The improved performance with networks containing hidden nodes is
likely a result of the information contained in combinations of the quantities
of each amino acid type, i.e. x amount of Ala with y amount of His. Perhaps
secondary structure content is dependent both on composition individual
amino acids and on combinations of these compositions. Therefore, in the in-
terest of de novoand secondary structure design, serious consideration of po-
tential protagonist and/or antagonist amino acid composition combinations
may lead to improved success rates.

The hidden node network's high accuracy, however, (within ±5.0% and
±5.6% for helix and strand composition respectively) is the best predictive
performance for secondary structure composition to date and can be attribut-
ed to the non-linear mapping of multi-layer neural networks. It should be
noted that the error in these predictions is comparable to the errors associated
with the experimental technique of circular dichroism (Johnson, 1990).

Utilizing the network weights made available from Qian and Sejnowski
[1988] and counting secondary structure predictions, total average errors for
helix, strand, and coil composition were approximately ±9.1%, ±12.6%, and
±12.9% respectively. By correcting for predicted secondary composition,
Qian and Sejnowski's predictions can be altered to improve the prediction
rate from 64% to 67%. Clearly, though secondary structure composition pre-
dictions are useful and can offer some improvement to secondary structure
prediction, secondary structure predictions do appear to have reached a
plateau. This leveling of secondary structure predictions has inspired more
effort in the direction of predicting tertiary interactions, as the next sections
will suggest.

4. Prediction of Amino Acid Residues on the Protein Surface

The residues on a protein surface play a key role in interaction with other
molecules, determine many physical properties, and constrain the structure
of the folded protein. Surface exposure of an amino acid residue can be
quantified as the area accessible to a water molecule in the folded protein
[Lee & Richards, 1971]. The calculation of solvent accessibility, however,
has generally required explicit knowledge of the experimentally determined
three-dimensional structure of the protein of interest. 

Recently, Holbrook, et al [1990] have applied neural network methods to
extract information about surface accessibility of protein residues from a
database of high-resolution protein structures. Neural networks of the type
seen in Figure 7 were trained to predict the accessibility of a central residue
in context of its flanking sequence.

In order to predict surface exposure of protein residues, it is first neces-
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sary to define categories for the buried and exposed residues. Recent defini-
tions [Rose, et al, 1985] use the fractional exposure of residues in folded pro-
teins compared with a standard, fully exposed state such as found in extend-
ed tripeptides. In the network analysis, two definitions of surface accessible
residues were used: 1) a binary model in which buried residues are defined as
those with less than 20% of the standard state exposure and accessible
residues as those greater than 20% fully exposed and 2) a ternary model in
which a residue is either fully buried (0-5% exposure), intermediate (5-40%)
exposure, or fully accessible (greater than 40% exposure). A continuous
model, which required prediction of the actual fractional exposure was also
explored.

The neural networks used in this study contained either zero (perceptron)
or one hidden layers and weights set by backpropagation (see Figure 7). The
protein sequences were presented to the neural networks as windows,or sub-
sequences, of 1-13 residues centered around and usually including the amino
acid of interest, which slide along the entire sequence. For experiments in-
volving only the flanking residues, the central residue was omitted from the
window. 

4.1 Binary Model

Window size was varied between 1 (no neighbors) and 13 (6 amino acids
on either side of the central) residues for both training and testing networks
containing two outputs. Table 5 shows the results of these experiments. The
correct overall prediction for the training set is seen to reach a maximum of
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Figure 7.  Neural network architecture used for the prediction of solvent accessibility
of amino acid residues in proteins.  Each amino acid in the window was represented
by activating one of 21 binary input nodes. The output consisted of either one, two, or
three nodes, corresponding to either a continuous, binary (buried/exposed) or
ternary (buried/intermediate/exposed) definition of accessibility



about 74% at window size 11 (-5:5) with a correlation coefficient of 0.48.
The highest percentage of correct prediction, 72%, and correlation
coefficient, 0.44, for the testing set was obtained with a window size of 9 (-
4:4) residues. This is only a 2% increase over the 70% obtained with net-
works trained on patterns of only single amino acids (window size 1). To in-
vestigate the significance of this difference and the influence of flanking
residues on exposure or burial of the central residue a network using exam-
ples consisting of only the flanking residues and excluding the central residue
was trained and tested on the same databases. This network was able to pre-
dict exposure of the central residue in 55.3% of the cases with a correlation
coefficient of 0.10 indicating that the sequence of the flanking residues has a
small, but significant effect on exposure of the central residue.

Analysis of the predictive capacity of the trained network as a function of
location of the residue being predicted in the protein sequence indicated that
the residues at the extreme N-terminus can be predicted with much greater
accuracy than the protein as a whole. The 10 amino terminal residues of the
proteins in the testing set can be correctly predicted in 84% of the cases (cor-
relation coefficient 0.50). A similar, but smaller effect is seen for the residues
at the carboxy-termini where 75% of the predictions are correct (correlation
coefficient 0.47). The high predictability of the N-terminal residues may
reflect the fact that this is the first region of the protein synthesized and as
such exists transiently in a different environment from the remainder of the
protein. It should also be noted that both the N-terminal and C-terminal por-
tions of the chain are more hydrophilic than the bulk of the protein.

An advantage of neural network analysis is that a prediction of surface ex-
posure is based on quantitative activity values at each of the output nodes.
Therefore a confidence level may be assigned to each prediction based on the
strength of the output activities. While the accuracy of prediction increases
with the minimum activity accepted, a corresponding decrease is seen in the
percent of the total residues whose accessibility is predicted. For example,
using the binary model of accessibility, while 100% of tested residues are
predicted with an accuracy of 72%, over half of the residues with the
strongest activities are predicted with greater than 80% accuracy.

4.2 Ternary Model

The use of a three state exposure model offers several advantages over the
two state model. First, the definition of buried and exposed residues is
clarified since intermediate cases are classified as a third category. Second, it
is possible to reproduce the observed distribution more closely by allowing
more classes. Finally, if it is not necessary to distinguish between fully and
partially exposed residues, it is possible to predict exposure with very high
accuracy. In experiments involving three-state prediction (buried, partially
exposed, and fully exposed), window size was from 1 to 9 residues, at which
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point prediction of the testing set began to decrease. Table 5 gives the results
of these experiments for both the training and testing datasets. For both
datasets, the fully buried and exposed residues are predicted with greater ac-
curacy than the partially exposed residues As in the experiments with a bina-
ry representation, the exposed residues in the testing set are consistently pre-
dicted approximately 10% more accurately than the buried. The overall peak
in prediction with the ternary model occurs for the testing set at window size
7 (-3:3) after which a decline occurs. Experiments with networks containing
a hidden layer of computational nodes between the input and output layers
resulted in an improvement in prediction for window size 7 and three output
states. The maximal improvement was observed when using 10 hidden
nodes, which predicted the testing set with 54.2% overall accuracy, com-
pared to the best prediction of 52.0% with a perceptron network. 

Using this three state network with hidden nodes, a residue which is pre-
dicted to be fully exposed was actually found to be fully or partially exposed
over 89% of the time, while a residue predicted to be buried was found fully
or partially buried in 95% of the cases. The difference in prediction percent-
age for buried and exposed is in large part due to overprediction of the fully
exposed state and underprediction of the fully buried state by the network. If
only fully exposed or fully buried residues are considered (cases observed or
predicted to be partially exposed are ignored) the states are predicted correct-
ly for 87% of the residues. The hydrophobic residues were predicted with
very high accuracy (86-100%) as are the hydrophilic residues (75-100%).
The ambiphilic residues glycine and threonine were, as expected, predicted
with less accuracy (68% and 60% respectively), but the ambiphilic residues
methionine, alanine and histidine are predicted with 90-100% accuracy. Even
the hydrophobic residue valine is correctly predicted to be exposed in one
case and the hydrophilic residue proline is predicted correctly to be buried in
one case. 
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Window %Correct %Correct %Correct %Correct
Size Train Test Train Test

Binary Binary Ternary Ternary
1 69.1 70.0 49.1 50.2
3 70.1 69.5 52.4 51.1
5 71.0 70.8 54.1 50.1
7 71.9 71.8 55.9 52.0
9 72.5 72.0 57.5 49.8
11 73.9 71.8 - -
13 73.4 70.7 - -

Table 5: Solvent exposure predictions



4.3 Continuous Model

In order to assess the potential for prediction of the percent of fractional
exposure without regard to arbitrary definitions of burial and exposure, a di-
rect mapping can be effected from amino acid sequence represented in a bi-
nary form as described above (21 nodes per residue) to fractional exposure
(S. Holbrook, unpublished results). This mapping utilized real numbers (the
actual or predicted fraction exposures of the central residue) as the output
nodes which are fit in the training process. Using a window size of 9 amino
acid residues, the training set converged at a correlation coefficient of 0.561
with an average deviation between observed and calculated exposure of
17%. This trained network was able to reproduce the exposures of the
residues in the testing set with a correlation coefficient of 0.508 and average
deviation of 18%.

4.4 Analysis of Network Weights

Examination of the network weights allowed the physical interpretation of
the major factors influencing residue exposure. From the plot of network
weights in the binary model shown in Figure 8, it is apparent that the primary
factor governing exposure of the strongly hydrophobic and hydrophilic
residues is the identity of the central amino acid itself, however for neutral or
ambiphilic residues such as proline and glycine the flanking sequence is
more influential. Nevertheless, the weights show that hydrophobic residues 2
or 3 amino acids before or after the central amino acid favor its burial. This
is likely due to the preponderance of buried residues in β-strand and to a
lesser degree α-helical structures and the periodicity of these structures.
Since exposed residues are favored over buried in turn and coil regions, ex-
posure of the central residue is favorably influenced by neighboring residues
such as proline and glycine which preferentially are found in these regions.
As turns and coils are not periodic structures, less positional specificity is ob-
served for the exposed residues than for buried residues which prefer regular
secondary structure.

The weights to the output nodes of the three state model show a greater
contribution of neighboring residues to the exposure of the central residue,
especially for the intermediate (partially exposed) node, which is not strong-
ly determined by the central residue alone (not shown). The weights (not
shown) suggest that larger residues (i.e. W, H, Y and R) tend towards inter-
mediate exposure (correlation coefficient 0.35) regardless of their hydropho-
bicity. Generally, high weights for neighboring hydrophobic residues tend to
favor burial of the central residue and high weights for neighboring hy-
drophilic residues favor exposure of the central residue.

In summary, neural network models for surface exposure of protein
residues make highly accurate predictions of accessibility based solely on the
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identity of the amino acid of interest and its flanking sequence. This capabili-
ty is a valuable tool to molecular biologists and protein engineers as well as
to those concerned with the prediction of protein structure from sequence
data alone.

5. Prediction of Cysteine’s Disulfide Bonding State

The bonding states of cysteine play important functional and structural
roles in globular proteins. Functionally, cysteines fix the heme groups in cy-
tochromes, bind metals in ferredoxins and metallothioneins, and act as nucle-
ophiles in thiol proteases. Structurally, cysteines form disulfide bonds that
provide stability to proteins such as snake venoms, peptide hormones, im-
munoglobulins, and lysozymes. 

Because free thiols are unstable relative to S-S bridges in the presence of
oxygen, cysteines are typically oxidized into disulfide bonds in proteins leav-
ing the cell; and conversely, because S-S bridges are unstable relative to free
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Figure 8.  Network weights for binary model of surface exposure..  (a) is the weight
matrix for the buried residue predictions, and (b) is the matrix for the exposed
residue predictions.



thiols in reducing environments, cysteines are typically reduced in proteins
that remain inside the cell. Predictions of the disulfide bonding state of cys-
teines based only on this criterion, however, result in failures for extracellu-
lar proteins containing free thiols such as actinidin, immunoglobulin, papain,
and some virus coat proteins and for cystine containing intracellular proteins
such as trypsin inhibitor, thioredoxin, and superoxide dismutase. Further-
more, to base positive disulfide bond predictions on high cysteine content
and even parity result in failures for ferredoxins, metallothioneins, and some
cytochromes. Clearly, predictions based on these simple rules fail to capture
the unique micro-environments a protein structure imposes on its cysteines to
define their disulfide bonding states.

Recently, Muskal et al. [1990] used a network of the architecture seen in
Figure 9 to predict a cysteine’s disulfide bonding state, with the presumption
that it is the local sequence that influences a cysteine’s preference for form-
ing a disulfide bond. The networks were of the feedforward type containing
no hidden nodes (perceptrons). Because every sequence presented to the net-
works contained a centered cysteine, the input layer encoded a window of
amino acid sequence surrounding but not including, the central cysteine, as
shown in Figure 9

Network performance depended on the size of the window around a cen-
tered cysteine. For testing, 30 examples were randomly selected (15 exam-
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Figure 9.  The cysteine network architecture. For clarity, only 6 window positions (3
amino acids to the N-terminal and 3 amino acids to the C-terminal side of  the omit-
ted centered cysteine) and 6 nodes per window position are illustrated.  The net is a
perceptron with two output nodes, one for disulphide bonded cysteines (S-S) and one
for hydrogen bonded (S-H).



ples of sequences surrounding disulfide bonded cysteines; 15 examples of se-
quences surrounding non-disulfide bonded cysteines) from the pool of 689
examples, leaving the remaining 659 examples for a training set. The
influence of flanking sequence on a centered cysteine was determined by in-
creasing window of sequence surrounding the cysteine and tabulating the
network’s predictive performance. As seen in Table 6, the network’s perfor-
mance on both the training and testing sets increases with increasing window
size. It should be noted that after window -7:7 (14 flanking amino acids, 21
nodes per amino acid, 2 output nodes, and 2 output node biases corresponds
to 14 * 21 * 2 + 2 = 590 weights), the number of weights begins to exceed
the number of training examples. As a result memorization becomes appar-
ent after a window of -6:6, suggesting that the windows -5:5 or -6:6 are opti-
mal for predictive purposes. Furthermore, Table 6 shows that trained net-
works made accurate predictions on examples never seen before thus
supporting the hypothesis that a cysteine’s propensity and/or aversion for
disulfide bond formation depends to a great extent on its neighbors in se-
quence.

Network performance for each set was evaluated by testing on a random
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Window %Train Css-bond %Test Css-bond
-1:1 65.7 .30 60.0 .22
-2:2 72.8 .45 66.7 .34
-3:3 79.1 .57 73.3 .51
-4:4 83.9 .67 73.3 .48
-5:5 85.7 .71 80.0 .61
-6:6 88.2 .76 80.0 .60
-7:7 91.4 .82 80.0 .61

Table 6: Dependence of training and testing success  of the cysteine net on window
size.  Window  of –x:x has x amino acids on either side of the cysteine.  C's are  Math-
ews [1975] correlation coefficients. 

Run %Correct Train %Correct Test
S-S S-H S-S S-H

1 89.7 83.3 80.0 80.0
2 89.4 82.3 80.0 80.0
3 89.7 83.3 90.0 70.0
4 90.2 83.0 70.0 90.0
5 90.5 83.0 70.0 100.0
6 90.5 84.3 90.0 70.0
7 90.0 82.7 90.0 70.0

Average 90.0 83.1 81.4 80.0

Table 7: Cross validation runs for cysteine network with window –5:5. 



subset of 20 examples (10 examples of sequences surrounding disulfide
bonded cysteines; 10 examples of sequences surrounding non-disulfide bond-
ed cysteines) taken from the pool of 689 examples after training on the re-
maining 669 examples. Each experiment was conducted independently on
networks with a window -5:5 (5 amino acids to the left and 5 to the right of a
central cysteine). 

After window size experiments were completed, 7 independent training
and testing experiments were conducted so as to determine an average per-
formance that was not dependent on any particular training and testing set.
Table 7 indicates that a network can be trained to predict disulfide bonded
scenarios 81.4% correctly and non-disulfide bonded scenarios 80.0% correct-
ly. Trained networks made accurate predictions on sequences from both ex-
tracellular and intracellular proteins. In fact, for the extracellular proteins ac-
tinidin, immunoglobulin, and papain, the odd cysteines not involved in
disulfide bonds were correctly predicted as such. Likewise, for the intracellu-
lar cystine-containing proteins such as trypsin inhibitor and superoxide dis-
mutase, every cysteine’s state was correctly predicted.

Figure 10 shows the secondary structure proportion as a function of win-
dow position for disulfide bonded cysteines. Here the sequences surrounding
and including half-cysteines seem to prefer the extended conformation of β−
sheets over that of turns and bends. The secondary structural preferences of
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Figure 10. Secondary structure surrounding disulfide bonded cysteines.  Secondary
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ture types and dividing by the total number of secondary structure occurring in that
window position. Secondary structure assignments were made by the method of Kab-
sch and Sander [1983].



half-cysteines perhaps enable the high prediction rate of a cysteine’s disulfide
bonding state. Note that in Figure 10, beyond ±5 residues from the central
half-cystine (coinciding with the selected network window size) the prefer-
ences for any secondary structure are greatly reduced.

Figure 11 is a graphical depiction of the weights averaged from the seven
network experiments. Note that cysteines at positions ±3 are not very con-
ducive towards disulfide bond formation. This can be explained by the fre-
quent occurrence of CYS-x-x-CYS in heme and metal binding proteins.
However, cysteines at position ±1 increase the propensity considerably. This
can be explained by the frequent occurrence of CYS-CYS in extracellular
proteins, where the cysteines can form a basis for linking three chain seg-
ments in close proximity. Figure 11 also shows a positive influence of closely
centered β-sheet forming residues such as ILE, TYR, and THR on disulfide
bond formation. 

The contribution an individual amino acid may have towards disulfide
bond formation, irrespective of window position, can be seen in Figure 12.
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Figure 11. Weights  for the connections to the S-S (a) and S-H (b) nodes averaged
over the 7 network experiments in Table 8. Dark shades indicate high and light
shades indicate low S-S (S-H) propensity.



One clear pattern is that the residues contributing towardsS-S bond forma-
tion are polar and/or charged while those againstformation are primarily hy-
drophobic. The effects of a locally hydrophobic environment could help to
bury a cysteine to make it less accessible to other cysteines, thus reducing the
chances of disulfide bond formation. Conversely, the effects of a locally hy-
drophilic environment could help to maintain cysteines in solution thus mak-
ing them more accessible to one another and to increases the chances of
disulfide bond formation.

The most striking features in Figure 12 exist between similar amino acids.
TYR, for example, is highly conducive towards disulfide bond formation, yet
PHE and TRP disfavor formation quite strongly. Electrostatic interaction be-
tween the edge of aromatic rings and sulfur atoms is found to be more fre-
quent between aromatics and half cysteines than with aromatics and free cys-
teines. Figure 13 also suggests that TYR will favor disulfide bond formation
over the other aromatics simply because PHE and TRP lack hydrophilic
character. Likewise, ARG suggests S-S formation more strongly than LYS.
Again, hydrophilic arguments find ARG more polar and thus more favorable
for S-S formation. Less obvious, however, is the strong S-S propensity of
ASN relative to GLN. Perhaps it is ASN’s smaller size that better enables the
close approach of a potential half-cystine. Consistent with this, the S-S
propensity of GLY, ASP and SER exceed that of their slightly larger counter-
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Figure 12.  Amino acid contribution to disulphide bond formation.  Weights from the
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parts ALA, GLU and THR. These differences in S-S propensity between oth-
erwise very similar amino acids may make feasible the stabilization and/or
destabilization of disulfide bonds through the site-directed mutagenesis of se-
quences surrounding half-cysteines.

The results of this network analysis suggest that tertiary structure features,
such as disulfide bond formation, may be found in local sequence informa-
tion. More experiments will need to be conducted to further exploit the infor-
mation content in local amino acid sequence. Perhaps this will suggest a new
twist to protein structure prediction. 

6. Tertiary Structure Prediction with Neural Networks

Bohr, et al, [1990] recently reported the use of a feedfoward neural net-
work trained by backpropagation on a class of functionally homologous pro-
teins to predict the tertiary folding pattern of another member of the same
functional class from sequence alone. The basis of this approach is that the
commonly used binary distance matrix representation of tertiary protein
structure, will be similar for members of a homologous protein family. In this
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Figure 13. Network for prediction of protein tertiary structure.  Input window is 30
residues to either side of the residue of interest, each represented by 20 nodes  (one of
which is activated).  The output level consists of two parts; a window of 30 residues
corresponding to those to the left of the central in the input which contains a 0 or 1
reflecting whether the residue is within 8Å of the central position.  The other 3 output
nodes specify the secondary structural type of the central residue.



representation the protein sequence is plotted along both the vertical and hor-
izontal axes and points are placed on the graph to indicate where two Cα po-
sitions are within a specified distance in the three-dimensional structure. The
network using tertiary structure information given as binary distance con-
straints between Cα atoms as well as a three-state model of secondary struc-
ture in the output layer and a sliding window of amino acid sequence as the
input layer of a three-layer network is shown in Figure 13. 

The input layer encompassed a window of -30 to +30 residues around the
residue of interest (central residue) and the output a window of the 30
residues preceding the central residue. For input, each amino acid position
was defined by 20 nodes each with a value of zero except for the one corre-
sponding to the actual amino acid which had a value of one. The output layer
consisted of 33 nodes, 30 representing the residues preceding the central
residue and having values of zero or one depending on whether the distance
to the central residue was less than or greater than 8 Å (in some cases 12 Å
was used) respectively, and three nodes indicating secondary structure of
helix, sheet, or coil. 

This network is characterized by a very large number of computational
nodes and variable weights. For input 1220 units (20x61) were used, in the
hidden layer 300-400 units, and in the output 33 units. The total number of
weighted links is therefore 375,900 or 501,200 for the two types of networks
used. Clearly, a network containing this many weights has the capacity to
memorize the small training set of 13 protease structures. The learning of the
training set to a level of 99.9% on the binary distance constraints and 100%
on the secondary structure assignment, indicates that the network memorizes
the training set effectively, but is unlikely to incorporate generalizations.
Thus, although the architecture is quite different, the application of this feed-
forward network is analogous to an associative memory network. 

This network is quite similar to the associative memory Hamiltonian ap-
proach which has been applied for tertiary structure prediction [Friedrichs &
Wolynes, 1989], thus raising the possibility that an associative memory type
neural network may be useful for the storage and retrieval of protein three-
dimensional folding patterns. However, it is doubtful whether this approach
can predict tertiary structure of proteins which are not homologous to pro-
teins on which the network was trained

7. Long Range Goals

While the ultimate goal of protein structural prediction is obviously to
produce a complete set of three-dimensional atomic coordinates solely from
the amino acid sequence, the best approach to this goal and the most impor-
tant intermediate goals are still not defined. First, it should be realized that
there is no such thing as a unique set of three-dimensional coordinates of a
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protein: i.e. all proteins are mobile to a greater or lesser degree and most can
assume different conformations depending on environment, ligands or sub-
strates, or complex formation. This structural variability has been observed
both by NMR methods in solution and X-ray studies in crystals. The
database for most theoretical studies, however, concentrates on an equilibri-
um or most stable conformation usually as observed in a crystal structure.
Our goal, currently, must be narrowed to determining this “sample conforma-
tion” which likely corresponds to one of the minimum energy states. Now
the question arises as to whether it is possible to determine this “protein
structure” or at least an approximation of it from information contained in
the structural and sequence databanks. It now appears that in some cases this
is possible and in others the data is insufficient. For example, highly homolo-
gous proteins likely share very similar structures, while on the other hand
large classes of proteins exist for which little or no structural information is
available such as membrane proteins and specialized structural proteins.

Thus, a more practical if less idealistic approach, will be to concentrate
efforts on the prediction of well understood structural features such as sec-
ondary structure, surface exposure, disulfide bond formation, etc. while
keeping sight of the final goal of predicting a complete tertiary structure.
This stairstep approach will not only provide valuable tools for molecular bi-
ologists, biochemists and protein engineers, but will also provide insight into
protein structure by forcing an overall critical view of the set of known pro-
tein structures. Figure 14 illustrates the overall scheme in this approach to
protein structure prediction. 

Primary Structure - Amino Acid Sequence

Local Features Long  Range Features Global Features
Secondary structure Disulphide bond pairs Sec. struct. composition

Surface exposure Hydrophobic interactions Structure class
Disulphide bonding state Supersecondary structure Functional class

Three Dimensional Structure
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Figure 14. A possible strategy for protein structure prediction.



8. Conclusions

The studies discussed above clearly demonstrate the power of the artificial
neural network in extracting information from the protein structure database
and extrapolating to make predictions of protein structural features from se-
quence alone. It should also be clear that so far almost all studies have uti-
lized simple backpropagation networks. While these types of networks will
continue to be widely used, it may be that the next round of advances in pro-
tein structure will involve other types of networks such as associative memo-
ry, Kohonen, or Hebbian (see, e.g., Steeg's chapter in this volume). Already,
the promise of an associative memory approach has been observed. Neural
networks comprise a powerful set of tools which have reached the stage
where biochemists and structural biologists, and not just computer scientists,
can now attack the problems of their choice. The results of these studies will
depend on their ingenuity in problem formulation, network design and the in-
formational storage of the databases. We can look forward to a rapid growth
in the number of biologists using these methods.
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