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Summary

Structural genomics projects are producing protein structure data at an unprecedented rate. In this paper, we present the Target
Informatics Platform (TIP), a novel structural informatics approach for amplifying the rapidly expanding body of experimental
protein structure information to enhance the discovery and optimization of small molecule protein modulators on a genomic
scale. In TIP, existing experimental structure information is augmented using a homology modeling approach, and binding
sites across multiple target families are compared using a clique detection algorithm. We report here a detailed analysis of
the structural coverage for the set of druggable human targets, highlighting drug target families where the level of structural
knowledge is currently quite high, as well as those areas where structural knowledge is sparse. Furthermore, we demonstrate
the utility of TIP’s intra- and inter-family binding site similarity analysis using a series of retrospective case studies. Our
analysis underscores the utility of a structural informatics infrastructure for extracting drug discovery-relevant information from
structural data, aiding researchers in the identification of lead discovery and optimization opportunities as well as potential
“off-target” liabilities.

Introduction

The completion of the human genome in 2001 revealed that
the total number of human genes is somewhere between
30,000 and 40,000 [1]. Recent analysis, however, has sug-
gested that the number of potential drug targets coded by the
human genome may in fact be much smaller than originally
speculated, with all currently marketed drugs being directed
at only 120 unique targets [2]. Homology-based extrapola-
tion of this number to the entire genome indicates that the
total number of potentially druggable targets may range from
3000 to 5000, with only a subset of these targets expected to
be directly linked to a disease state [3].

While novel, druggable, and clinically relevant targets
may represent a limited subset of the genome, these targets
are commonly members of larger protein families whose con-
stituents share many of the same sequence, structure, and
binding site characteristics as the primary druggable target.
Complicating matters, these similar targets may not be rel-
evant to the particular disease state due to differing tissue
distribution, expression levels, or regulation under differ-
ent physiological conditions. Hence, even though the abso-
lute number of druggable, disease-relevant targets is limited,
the number of undesirable “off-targets” for any given small

molecule modulator can be quite large, supporting the well
established need for technologies capable of uncovering po-
tential selectivity and cross-reactivity issues as early in the
drug development process as possible.

Following the completion of the human genome, struc-
tural genomics emerged as a major research initiative charged
with providing structural and functional information for all
human proteins. Two of the most well-funded structural ge-
nomics efforts are the Protein Structure Initiative (PSI) [4],
which is focused primarily on solving one structure for every
major protein fold family, and the recently launched Struc-
tural Genomics Consortium (SGC) [5], which is focused al-
most entirely on solving the structures of human proteins.
Given its focus on human proteins, the SGC project is ex-
pected to significantly expand the experimental structural in-
formation available for the “druggable” human genome.

During and after the elucidation of the human genome, the
field of bioinformatics matured very quickly to address the
need for the useful organization and analysis of the emerging
landslide of gene sequence data. A computational community
of similar size and resolve has yet to emerge for the organiza-
tion and analysis of the landslide of structural data produced
by structural genomics. Indeed, the well known structural
family classification resources such as SCOP [6], CATH [7],



Figure 1. Overview of the algorithms applied within the target informatics platform. These algorithms are used to amplify the initial information contained
in the TIP database: the protein sequences from the International Protein Index database (IPI) [11], and the protein structures from the Protein Data Bank
(PDB) [12]. The algorithm engine in TIP proceeds as follows: First, the sequence similarity relationships are calculated using the BLAST algorithm [13]. Next,
structures are determined for each sequence using the homology modeling algorithm, STRUCTFAST [14]. After the structures have been determined, their
associated small molecule binding and protein-protein interaction sites are determined using the site finding algorithm, SiteSeeker [15]. After this step, the
similarity relationships between each of the structures are calculated using the structure alignment algorithm StructSorter. Finally, the binding site similarity
relationships are calculated using a weighted clique detection algorithm called SiteSorter [16]. It has been independently reported elsewhere that clique detection
algorithms are capable of determining similarities between small molecule binding and protein-protein interaction sites on targets that do not share any sequence
or structure homology [17]. Since structure determination, structure alignment, and site alignment require significantly more computation time than sequence
alignment via BLAST, a database has been integrated into TIP to store the results of these calculations and automatically initiate new calculations when new
experimental structure data is uploaded. In a separate publication, we have reported on a clustering methodology that allows us to continuously update and
maintain the TIP database of structural alignments in a computationally efficient manner[18]. These calculations required approximately 3 months to complete
on a 128-node Linux cluster (3 GHz processors) for the ∼30,000 structures in the PDB and the ∼25,000 human target sequences in TIP. Currently, we are
calculating other drug discovery relevant proteomes, such as mouse and rat, and various pathogenic species.

and FSSP [8], Gene3D [9], and VAST [10], have yet to be
extended to address the drug discovery relevant problem of
target binding site similarity and cross-reactivity.

The incredible progress made by the experimental protein
structure community in this decade establishes two important
challenges to the computational community. First, since the
various structural genomics projects are not projected to com-
plete the human structural proteome within the next two
decades, there is a need for computational approaches that are
capable of amplifying the existing structural data to broaden
the current structural coverage of druggable target space. Sec-
ond, since the probability of having multiple structures per
target family has increased significantly, there is a need for
new informatics approaches capable of leveraging structural
data in a holistic manner to enhance the discovery and opti-
mization of selective small molecule protein modulators on
a genomic scale.

In this paper, we report a novel structural informatics ap-
proach to storing, organizing, and amplifying the growing
body of experimental protein structure data. Since the precise
details of the database architecture and algorithmic methods
utilized in our approach are beyond the scope of this publica-
tion and will be published elsewhere, this paper will outline
the general framework of our approach and report on its ca-
pacity to address the two computational challenges outlined,
specifically addressing how our approach has been applied
for annotating the druggable human genome with structural
information.

Methods

The Target Informatics Platform (TIP) consists of a fully
automated computational approach for determining protein



Figure 2. Structural annotation statistics for 5,930 druggable target PFAM domain sequences. The total number of unique Drug Target (DT) PFAM domain
sequences corresponds to all of the unique sequence regions found in human sequences from the IPI dataset, as well as sequences from PDB derived from
human and the related mammalian species Bos taurus (cow), Mus musculus (sheep), Oryctolagus cuniculus (rabbit), Rattus norvegicus (rat), and Sus scrofa
(pig). The percent identity ranges shown for modeled sequences correspond to the percent sequence identity to the PDB template used for modeling.

structures and binding sites and their respective similarities,
as well as a database to store the calculation results so that
they are available in the future without the need for additional
calculations. Figure 1 shows an overview of the algorithms
that are applied within TIP.

Results and discussion

While the performance of the STRUCTFAST, StructSorter,
SiteSeeker, and SiteSorter algorithms are being considered
in separate publications, we report here on the potential of a
structural informatics platform such as TIP to address the two
important computational challenges outlined in the introduc-
tion. First, we will discuss in detail TIP’s structural coverage
for druggable human targets. Second, we discuss several ex-
amples of interesting and well-established cross-reactivities
between druggable target families that can be revealed via the
synergistic application of the STRUCTFAST, SiteSeeker, and
SiteSorter algorithms.

Structural coverage for druggable target space

To define the space of known and potential druggable targets
in the human genome, we used a sequence-domain based ap-
proach for annotation and retrieval of protein sequences con-
taining known “druggable domains”. As the starting point for
this analysis, we used a set of 125 druggable Interpro [19]
domains that were described by Hopkins et al. [2] as func-
tional domains which have been shown to bind compounds
obeying the Lipinski Rule-of-5 criteria for drug-likeness [20].
Using the database cross-referencing feature of Interpro, we
mapped each of these 125 Interpro domains to a unique do-
main from the PFAM Protein Families database [21]. This list

of PFAM domains was supplemented with PFAM domains
from a manually curated internal database of potentially drug-
gable targets, to yield a total of 161 unique PFAM domains
associated with druggable targets. For all of the analysis per-
formed here, the domain sequences described correspond to
only the PFAM domain regions, not the entire protein se-
quence. There are in fact numerous cases where multiple dis-
tinct “druggable” PFAM domains exist within a single pro-
tein sequence, so all of these regions are counted as unique
domains in this work.

To extract a set of human sequences containing these drug-
gable PFAM domains we used RPS-BLAST [22] to query a
set of human sequences derived from the International Pro-
tein Index (IPI) and PDB against the set of PFAM domain
profiles. The final list of IPI and PDB sequences was clus-
tered at 95% ID to yield a total of 5,930 unique druggable
domain sequences.

Querying TIP with the 5,930 druggable target domain se-
quences yielded 740 sequences associated with experimen-
tal structures in the PDB, 4,011 sequences associated with
models built by the STRUCTFAST comparative modeling
algorithm incorporated into TIP, and 1,179 sequences which
were not associated with any PDB structure nor any modeled
structure (Figure 2).

As shown in Figure 2, of the 4,011 druggable sequences
with homology models available, there is a great deal of vari-
ability in terms of the “resolution” with which these models
were built, or in other words, the level of similarity to the
PDB template used for modeling. While 747 sequences can
be modeled very reliably with similarity levels of >70% ID
to the template, over 40% (1668) of the sequences which can
be modeled had less than 30% ID to the best PDB template,
with nearly half of these (850) built at very remote similarity
levels of less than 20% ID. To put this in context, in general



Figure 3. Druggable Target Family Percent Structural Coverage. Blue bars represent the percentage of members of a given target family that have experimental
structures available in the PDB. Green bars indicate the percentage of targets which have homology models available in the TIP database.

it is accepted that models with greater than 50% sequence
identity are usually of a high enough quality to have true
utility in structure-based drug design and lead optimization
based on a detailed understanding of ligand-binding inter-
actions [23]. Models that have a sequence identity between
30% and 50% tend to be more confidently used for target
druggability assessments, ligand binding site identification,
and structure-based virtual screening. Sequence similarity
below 30% is often regarded as the “twilight zone” of com-
parative modeling – where the confidence level in structural
and/or functional annotations via homology inference tends
to drop. Nevertheless, while the ligand binding sites of such
remote homology models may not be resolved well enough
for structure-based drug design, the overall features of the
structure can still have significant utility for initial selectiv-
ity analyses and the design of mutagenesis experiments, for
example.

Target family structural coverage

To get a better sense of the distribution of structural cov-
erage by target family, we performed a classification of the
druggable PFAM domains in order to cluster similar targets
together and determine the structural coverage for each fam-
ily. Table 1 shows the structural annotation available for the
22 target groupings that were used (numerous smaller tar-
get families are grouped together according to class). This

analysis highlights that the overall number of druggable do-
main sequences which are represented in the PDB is still
quite low at only 12.5%. Some target families, however, have
significantly better coverage in the PDB than others, such
as Nuclear Hormone Receptors at 43% (41 of 95 total se-
quences are associated with a PDB), and Trypsin-like pro-
teases at 26% (56 of 214 sequences). The lowest level of
experimental structural coverage is found in members of the
membrane protein target families, which is not surprising
due to the ongoing challenges posed by membrane-protein
crystallography [24].

If we consider structural coverage to include compara-
tive models as well as PDBs, then a much more complete
structural landscape is observed, with 80% of all druggable
domains having either a PDB structure or modeled struc-
ture. By combining comparative models and PDB structures,
some gene families such as Nuclear Receptors, Phosphodi-
esterases, and Cyclophilin-type isomerases are found to in
fact have 100% structural coverage, while larger families
such as Protein Kinases, Trypsin-Like Proteases, and Phos-
phatases are not far behind at approximately 98% coverage
(Figure 3). While many of these models are still not at the
highest level of resolution, as illustrated in Figure 2, it is
nevertheless encouraging to see that, with the exception of
membrane-bound proteins, structural information for most
members of major target families can now be obtained via
comparative modeling.
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Table 2. Summary of TIP’s binding site content for all available druggable target structures. The total number
of structures corresponds to all unique PDB IDs for that family, plus the number of homology models available.
The total number of co-crystal sites corresponds to the number of sites in PDBs binding to small organic ligands.
Co-crystal sites with less than 15 residues were excluded to avoid counting the numerous non-specific ligand
interactions to small surface patches that exist in many PDB structures. The total number of predicted sites
on models and PDBs corresponds to sites predicted with > 60% confidence by the SiteSeeker site annotation
algorithm incorporated into the TIP. It should be noted that redundancy of co-crystal sites and predicted sites
within a given structure was not removed, so in some cases predicted site annotations on PDBs will overlap with
co-crystal sites.

# All structures # All PDB # All predicted sites Average # Predicted
Family (PDBs+models) Co-crystal sites (from PDBs+models) sites per structure

ATPases 156 138 426 2.7
Metalloproteases 285 353 538 1.9
Misc. Hydrolases 877 879 1835 2.1
Phosphatases 199 76 301 1.5
Phosphodiesterases 88 126 144 1.6
Trypsin-like Proteases 876 645 1026 1.2
Cyclophilin-type isomerases 124 11 151 1.2
Misc. Other Enzymes 409 353 778 1.9
Misc. Oxidoreductases 657 1406 1414 2.2
P450s 114 27 418 3.7
Short chain dehydrogenases 132 231 245 1.9
Misc. Transferases 622 1279 1438 2.3
Protein Kinases 1010 431 2029 2.0
GPCRs, Family 1 745 80 2595 3.5
GPCRs, Family 2 5 0 2 0.4
Other Cell Surf. Receptors 97 18 157 1.6
Ion Channels 154 123 159 1.0
Ion Pumps 85 9 115 1.4
Mitochondrial transporters 54 14 312 5.8
Other Membrane Proteins 4 0 5 1.3
Nuclear Hormone Receptors 222 325 412 1.9
Other drug target domains 1248 248 1368 1.1
Total 8163 15868 6772 1.9

From druggable proteins to druggable sites

The vast majority of small molecule drugs and drug-like
compounds exert their effects by directly interacting with
and modulating the activity of a protein target via a specific
binding event within a buried pocket or surface cleft of the
protein. In light of this observation, another way to charac-
terize the true number of protein targets a small molecule
can bind to is by determining the total number of druggable
binding sites within all members of druggable domain fam-
ilies, since any single target may have multiple sites where
small molecule modulators may bind (e.g. substrate sites, co-
factor sites, allosteric sites, activator sites, dimer interfaces,
or protein-protein interaction sites).

To characterize the number of distinct small molecule
binding sites found within the druggable targets for which
structures are available, we have analyzed the SiteSeeker
ligand-binding site annotations from the TIP knowledge-
base. This binding site annotation includes sites which have
been experimentally verified to bind small molecules via co-
crystallization in PDB structures, as well as sites predicted to
bind small molecules based on either a direct mapping from
co-crystal sites in PDB structures, or based on geometric
and physicochemical properties conducive to binding small

molecules. By taking into account all of the predicted and
known ligand-binding sites annotated for all druggable target
comparative models and PDB structures, we find that there
is on average approximately two predicted ligand-binding
sites per druggable target structure (Table 2). The observa-
tion that multiple ligand binding sites can be found on drug
targets is particularly relevant in families where selectivity is
of paramount importance, such as the protein kinase family.
Since the ATP sites of protein kinases are highly conserved
and often extremely difficult to selectively target with small
molecule inhibitors, a key strategy that has emerged for ki-
nase drug discovery is the identification of alternate allosteric
sites which can be targeted with a much greater degree of se-
lectivity [25].

Site-based identification of “Off-target” opportunities and
liabilities

In addition to opening up opportunities for identifying alter-
native binding sites to target for small molecule inhibition,
a “site-centric” view of druggable target space offers key
advantages for predicting selectivity and/or cross-reactivity
among off-targets. In contrast to the more coarse metrics of
sequence and structural similarity, target family-wide com-



Figure 4. Examples of “off-target” site cross-reactivity between members of the same structural family (a) as well as between members of different structural
families (b). (a) The molecule BAY 43-9006 potently inhibits both BRAF and KIT kinase, as well as several other kinases. Shown here are the binding sites of
BAY 43–9006 in BRAF and KIT, from both its co-crystal structure with BRAF (PDB 1 uwh) and its predicted binding mode in KIT (PDB 1t46). The proteins’
ligand binding site surfaces are colored according to their physicochemical similarity to each other, on a gradient from dark blue (spatially similar positioning
of identical functional groups) to yellow (dissimilarity of functional groups). The strong similarity of the binding pockets suggests a high probability of cross-
reactivity, even though these proteins share only 30% overall sequence similarity. (b) Angiotensin Converting Enzyme (ACE), Neprilysin, and Leukotriene
A4 Hydrolase (LTA4 H) have no overall similarity at the sequence or structural level, however they are all members of the Metalloprotease class of targets,
and all have been shown to potently bind ACE inhibitors such as captopril and enalaprilat [26, 27]. Shown here is an overlay of the three active sites, from
the ACE-enalaprilat co-crystal structure PDB 1uze, the LTA4H PDB structure 1gw6, and a STRUCTFAST homology model of Neprilysin, highlighting the
conserved residues in the zinc-chelating region of the pocket as well as in several regions of the pocket making important contacts with the enalaprilat ligand.

parison of ligand-binding sites allows a much more detailed
view of the similarities and differences that are truly relevant
for selective drug design. Figure 4 provides two examples
where a site-centric view of target similarity offers insight
that could not be gained by looking at sequence or structural
similarity alone.

The concept of binding site based prioritization of likely
off-target liabilities (or conversely, off-target opportunities,
if the simultaneous inhibition of multiple targets is a de-
sired effect) is particularly important for large target fami-
lies such as protein kinases and proteases. For these families,
the selection of the right off-targets to screen against early
on is a challenging task, but potentially a very valuable one
given the significant downstream costs likely to be incurred
from negative off-target effects. Furthermore, binding site
similarity detection methodologies can also extend our un-
derstanding of off-target similarities between target families
that are otherwise completely dissimilar at the structural or
sequence level, as shown in the examples in Figures 4b and
5.

Implications for drug discovery

While the overall amount of 3D structural information that
can be gleaned for so-called “druggable” human target fam-
ilies is quite impressive, there is still significant room for
improvement, particularly in the resolution at which these

structures can be annotated. Hence, our analysis underscores
the continuing need for additional experimentally derived
protein structures for therapeutically relevant target fami-
lies, an observation in agreement with another recent review
[32]. As of November 2005, only about 12.5% of the 5,930
druggable sequence domains described in this work currently
have at least one experimental structure available in the PDB.
However it should be noted that many targets actually have
multiple PDB structures available, often with subtly different
3D conformations or complexed with different ligands (for
example CDK2, p38 kinase, Trypsin, COX-2, PDE5). Of the
remaining 5,190 targets, roughly 77% can be modeled using
comparative modeling approaches, although nearly half of
these structures can only be predicted with highly sensitive
profile-based homology modeling methods which are capable
of extending well into the remote homology “twilight zone”
of 15–30% sequence similarity to known PDB structures. It
is important to note that a large proportion (roughly 61%)
of these twilight-zone targets, as well as targets for which
there is no structure available at all, fall into protein families
that are membrane-bound. Most notable among this group
are the rhodopsin-like GPCR family, the largest and most
prolific family of drug targets but a family for which only
one suitable crystal structure template is available, bovine
rhodopsin [33]. Membrane proteins such as GPCRs and
Ion Channels remain the “holy grail” of structural biology,
since these proteins are notoriously difficult to crystallize,



Figure 5. Example of potential opportunities and liabilities that can be exposed through off-target binding site similarity relationships. We performed a site-based
similarity search using the COX-2 binding site for the inhibitor celecoxib as the query to retrieve similar “off-target” sites from the full database of druggable
binding sites in TIP. Two of the top-ranking sites were the agonist binding site of PPAR-gamma, and the PAP co-factor-binding site of estrogen sulfotransferase
(SULT1E1). The top right figure shows celecoxib overlaid into the PPAR-gamma agonist binding-pocket, derived from an optimal overlay of the two sites
using the site overlay feature of our EVE software. The binding pocket shapes are well conserved, as are several key binding residues. Interestingly, it has been
established in the literature that numerous COX-2 inhibitors do in fact also have PPAR agonist activity [28]. A detailed understanding of the similarity between
these two sites offers the off-target opportunity that COX inhibitor scaffolds may represent useful starting points for the design of novel PPAR ligands. On the
other hand, the similarity to the PAP co-factor binding site of SULT1E1 (bottom right) represents a potential off-target liability due to possible interference with
normal estrogen metabolism, since SULT1E1 is responsible for the conversion of estradiol to its inactive sulfoconjugate [29]. Furthermore, it is possible that
the well publicized hypertensive side effects of COX-2 inhibitors such as Celebrex and Vioxx may be indirectly related to sulfotransferase inhibition. In fact
the COX-2 inhibitor etoricoxib (Arcoxia, approved in EU) is known to inhibit SULT1E1 [30], leading to increased serum concentrations of ethinylestradiol.
Interestingly, separate studies have been shown that high serum concentrations of ethinylestradiol can contribute to increased fluid retention and hypertension
via activation of the renin-angiotensin-aldosterone system [31].

but new structural information for these well-validated drug
targets will undoubtedly have the greatest impact on drug
discovery.

As the output of high throughput structural genomics
initiatives and techniques for membrane protein crystalliza-
tion continue to improve over the next five to ten years,
we can expect the structural coverage of many important,
therapeutically relevant gene families to become much more
complete. As these new crystal structures are deposited to the
public domain to fill in the holes in structural space, the abil-
ity to produce more and more accurate comparative models
to fill in the remaining gaps will concurrently improve.

With over 30,000 experimental protein structures cur-
rently in the PDB, and approximately 100 new crystal struc-
tures being deposited to the PDB per week, it is becom-
ing increasingly important to develop efficient infrastruc-
tures for properly storing, annotating, mining, and analyz-
ing this deluge of structural data, in much the same way
that analogous infrastructures have been developed to han-
dle large amounts of sequence, chemical structure, and gene
expression data in the disciplines of bioinformatics, chem-
informatics, and proteomics, respectively. As the amount of
structural data increases, structural informatics databases and
data-mining tools such as the Target Informatics Platform
will be necessary to extract the maximum value from every

new experimental structure that is solved. Most importantly,
structural informatics approaches for analyzing ligand bind-
ing site similarities on a proteome-wide scale have particular
value in identifying off-target cross-reactivity, giving discov-
ery researchers powerful insight into potential risks and op-
portunities as early in discovery as possible.
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