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Prediction of the disulfide-bonding state of cysteine in proteins

Steven M.Muskal1, Stephen R.Holbrook2 and
Sung-Hou Kim1-2"3

'Department of Chemistry and 2Lawrence Berkeley Laboratory, University
of California, Berkeley, CA 94720, USA

'To whom correspondence should be addressed

The bonding states of cysteine play important functional and
structural roles in proteins. In particular, disulfide bond
formation is one of the most important factors influencing
the three-dimensional fold of proteins. Proteins of known
structure were used to teach computer-simulated neural
networks rules for predicting the disulfide-bonding state of
a cysteine given only its flanking amino acid sequence.
Resulting networks make accurate predictions on sequences
different from those used in training, suggesting that
local sequence greatly influences cysteines in disulfide
bond formation. The average prediction rate after seven
independent network experiments is 81.4% for disulfide-
bonded and 80.0% for non-disulfide-bonded scenarios.
Predictive accuracy is related to the strength of network
output activities. Network weights reveal interesting position-
dependent amino acid preferences and provide a physical
basis for understanding the correlation between the flanking
sequence and a cysteine's disulfide-bonding state. Network
predictions may be used to increase or decrease the stability
of existing disulfide bonds or to aid the search for potential
sites to introduce new disulfide bonds.
Key words: cysteine/disulfide bond/neural network/structure
prediction

Introduction
Cysteine's thiol group is the most reactive of any amino acid
side chain (Creighton, 1984). Existing as the free sulfhydryl,
ionized as the thiolate ion or oxidized into disulfide, thioether
or thioester bonds, cysteine plays an important functional and
structural role in globular proteins. Functionally, cysteines fix
hemes in cytochromes, bind metals in a variety of metalloproteins,
and act as nucleophiles in thiol proteases. Structurally, cysteines
form disulfide bonds that provide stability to snake venoms,
peptide hormones, immunoglobulins, lysozymes and others
(Schulz and Schirmer, 1984).

Because free thiols are unstable relative to S—S bridges in the
presence of oxygen, cysteines are typically oxidized into disulfide
bonds in proteins leaving the cell and reduced in proteins
remaining inside die cell (Fahey et al., 1977). Predictions of the
disulfide-bonding state of cysteines based only on this criterion,
however, result in failures for extracellular proteins containing
free thiols, e.g. actinidin, immunoglobulin, papain and some virus
coat proteins, and for cystine-containing intracellular proteins,
e.g. trypsin inhibitor, thioredoxin and superoxide dismutase.
Furthermore, to base positive disulfide-bond predictions on high
cysteine content and even parity result in failures for ferrodoxins,

metallodiioneins and some cytochromes. Clearly, predictions
based on diese simple rules fail to capture the unique micro-
environments a protein structure imposes on its cysteines to define
their disulfide-bonding states.

Recently, computer-simulated neural networks have shown
great promise in extracting structural features from sequence
information (Bohr etal., 1988; Qian and Sejnowski, 1988;
Holley and Karplus, 1989; McGregor et al., 1989; Holbrook
etal., 1990). In analogy to biological neuronal systems,
computer-simulated neural networks consist of a large number
of simple, highly interconnected computational units or nodes
diat operate in parallel. Integrating both 'excitatory' and
'inhibitory' input signals, each node generates an output based
on some threshold value. When these functional units are
organized into layers, a supervised network can be trained to map
a set of input patterns to a set of output patterns (for a review
of computational neural networks see Lippmann, 1987).

In this paper, we make use of computer-simulated neural
networks for determining the effects of local sequence on the
chemistry of cysteine. In particular, networks were trained to
predict whether or not a cysteine participates in a disulfide bond,
with the presumption tiiat it is the local sequence that determines
a cysteine's disulfide-bonding state. Once die networks learned
the 'rules' from a large number of training sequences, mey were
tested on sets of sequences different from those used in training.
The observation that trained networks made accurate predictions
on the disulfide-bonding state of cysteines in die context of their
flanking amino acids, supports the notion that locally surrounding
amino acids greatly influence cysteines in forming disulfide
bridges.

Materials and methods
Database
Cyst(e)ine-containing proteins of known tertiary structure were
obtained from the Brookhaven Protein Data Bank (Bernstein
etal., 1977). Disulfide bond assignments were based on
SSBOND records in this database and were confirmed with
Kabsch and Sander's (1983) program DSSP. A set of 128
cysteine-containing protein structures (Table I) was selected to
provide examples for network training and testing.

Identical cysteine-containing sequences were removed from the
pool of examples leaving 689 examples, 379 of which were in
the disulfide-bonded state and 310 of which were in the non-
disulfide-bonded state. The 689 examples were used to create
eight training and eight testing sets. One of die training-testing
sets was used to find die optimum number of flanking residues
(windowsize) for prediction purposes and contained a random
selection of 30 examples used for the testing set, leaving the
remaining 659 examples for die training set. The other seven
training-testing sets were used for independent training and testing
experiments and contained a random selection of 20 examples
for each testing set, leaving die remaining 669 examples for each
training set.
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Table I. Proteins corresponding to the following protein databank codes were used in network training and testing

1ABP
1CYC
1GF1
1IG2
1PSG
1XY1
2DHB
2RHE
3C2C
3SGB
4SBV

1ACX
1ETU
1GF2
1LZ1
1PYP
2ABX
2GN5
2SGA
3CPV
3WGA
5CPA

1AZU
1F19
1GP1
1MCP
1RBB
2ACT
2HFL
2SOD
3EBX
451C
5RXN

1BP2
1FB4
1GPD
1MEV
1RDG
2ALP
2KAJ
2SSI
3EST
4ADH
5TNC

1CAC
1FBJ
1HBS
1NTP
1REI
2APP
2LDX
2STV
3FAB
4APE
6PAD

1CC5
1FC1
1HDS
1NXB
1RHD
2AZA
2LHB

, 2TAA
3FXC
4DFR
6API

1CCR
1FDH
1HIP
1P2P
1SGT
2CAB
2MHR
2TBV
3GAP
4FD1
7ATC

1CHG
1FDX
1HKG
1PAZ
1SN3
2CCY
2MT2
2TMV
3GRS
4FXN
8CAT

1CH0
1FX1
1HMG
1PFC
1TGN
2CDV
2OVO
2YHX
3INS
4LDH

1CRN
1FXB
1HMZ
1PHH
1TON
2CGA
2PAB
3ADK
3PGK
4MDH

1CTX
1GCR
1HOE
1PP2
1TRM
2CPP
2PCY
3APR
3PTB
4PFK

1CY3
1GD1
1HVP
1PRC
1WSY
2CYP
2PRK
3BCL
3RP2
4RHV

Network design and training procedure
The networks were of the feedforward type containing no hidden
nodes (perceptrons). Because every sequence presented to the
networks contained a centered cysteine, the input layer encoded
a window of amino acid sequence surrounding, but not including,
the central cysteine, as shown in Figure 1. A weighted connection
existed between each node in theinput layer and each node in
the output layer. Each output node had an additional weight
termed the bias. Each output node takes a weighted sum of its
inputs,

X, = E (WoJ X
i

+ Bo (1)

where Woi is the weight to output node o from input node i, I,
is the value at the input node i (either 0.0 or 1.0) and Bo is the
output bias. The actual activities Ao appearing at the output
nodes are a function of a constant activation threshold T and
defined by the following activation function:

Xo > T,AO = Xo

Xo <T,AO = 0.0 (2)

The weights were adjusted by back-propagation (Rumelhart
et al., 1986a,b) so as to minimize the difference between the
actual output Ao of the network and the desired output Do. The
weight change is defined by

where

AWOtl = r) X vo X Xo

vo = (Do - Ao)

(3)

(4)

and r) is the constant learning rate. If the weight change is
averaged over all the training examples, equation (3) will
minimize the total error

(5)

across all examples p in a gradient descent fashion.
Each window position encoded a group of 21 nodes, one per

amino acid and one to provide a null input used when the window
overlapped one of the termini or a break in the chain. The output
layer consisted of two nodes, one for a disulfide-bonded state
and one for a non-disulfide-bonded state.

Before each simulation, network weights were assigned random
values between -0 .3 and 0.3. A training cycle then consisted
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Fig. 1. A diagram of network architecture. For clarity, only six window
positions (three amino acids to the N-terminal and three amino acids to the
C-terminal side of an assumed centered cysteine) and six nodes per window
position are illustrated. Within a window position, an amino acid is
represented by giving a value of 1.0 to its node while setting all other nodes
in that window position to 0.0. Input values are propagated through
weighted links to produce activities at the two output nodes, S—S and
S-H. The output node with the highest activity is the network's decision.

Table n . Dependence of training and testing success on window size

Window % Train C^-bond % Test

-1:1
-2:2
-3:3
-4 :4
-5 :5
-6 :6
-7 :7

65.7
72.8
79.1
83.9
85.7
88 2
91.4

0.30
0.45
0.57
0.67
0.71
0.76
0.82

60.0
66.7
73.3
73.3
80.0
80.0
80.0

0.22
0.34
0.51
0.48
0.61
0.60
0.61

Dependence of network performance on the size of the window around a
centered cysteine. Thirty examples (15 examples of sequences surrounding
disulfide-bonded cysteines; 15 examples of sequences surrounding non-
disulfide-bonded cysteines) were randomly selected from the pool of 689
examples to create a testing set, leaving the remaining 659 examples for a
training set. Window - x i i stands for a window that has x amino acids on
N-terminal and x amino acids on the C-terminal side of a central cysteine.
% Train, % Test, and C^-bond are % correct prediction on training set,
% correct prediction on the testing set, and Mathews' (1975) correlation
coefficient respectively.
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of presenting every example in the training set to the network,
after which the weights were updated according to an average
weight change as determined by the delta rule in equation (3)
(Rumelhart et al., 1986a). Once the total error over all examples
in the training set converged to a minimum,, the weights were
fixed and the network was evaluated on the training and testing
sets. Network performance was defined by the percentage correct
prediction at the output node with the highest activity. As there
were approximately equal numbers of examples of disulfide-
bonded and non-disulfide-bonded states in the training and testing
sets, anything > 50% prediction would be a non-random decision.
The correlation coefficient by Mathews (1975) was another useful
measure in determining the degree of randomness in the
network's decisions.

Table III. Performance of independent training and testing sessions

Set % Train % Test

1
2
3
4
5
6
7

Av

S-S

89.7
89.4
89.7
90.2
90.5
90.5
90.0

900

S-H

83.3
82.3
83.3
83.0
83.0
84.3
82.7

83.1

S-S

80.0
80.0
90.0
70.0
70.0
90.0
90.0

81.4

S - H

80.0
80.0
70.0
90.0

100.0
70.0
70.0

80.0

Network performance for each set was evaluated by testing on a random
subset of 20 examples (10 examples of sequences surrounding disulfide-
bonded cysteines; 10 examples of sequences surrounding non-disulfide-
bonded cysteines) taken from the pool of 689 examples after training on the
remaining 669 examples. Each experiment was conducted independently on
networks with a window -5 :5 (five amino acids to the left and five to the
right of a central cysteine). For the training and testing sets, S-S and S—H
stand for % correct prediction for disulfide-bonding state and % correct
prediction for non-disulfide-bonding state respectively.

Results and discussion

To determine the influence of flanking sequence on a centered
cysteine in predicting its disulfide-bonding state, we first asked
how an increasing window of sequence would affect the network's
predictive performance. As seen in Table II, the network's
performance on both the training and testing sets increases with
increasing window size. The phenomenon of increasing training
performance despite stabilized testing performance is attributed
to memorization, an effect that results in networks containing
a large number of weights relative to training examples. It should
be noted that after window —7:7 (14 flanking amino acid posi-
tions, 21 nodes per amino acid position, two output nodes and
two output node biases correspond to 14 X 21 x 2 + 2 = 590
weights), the number of weights begins to exceed the number
of training examples. As this occurs, the capacity that the net-
work has for memorization increases considerably, and hence
experiments were stopped after a window size of 14. Table II
indicates that the windows —5:5 or —6:6 are optimal for pre-
dictive purposes, where the percentage correct prediction and
correlation coefficient on the testing set reach a maximum and
memorization between the training and testing sets is minimized.
Furthermore, Table II shows that trained networks made accurate
predictions on examples never seen before, thus supporting the
hypothesis that a cysteine's propensity and/or aversion for
disulfide bond formation depends to a great extent on its neighbors
in sequence.

After window size experiments were completed, seven
independent training and testing experiments were conducted so
as to determine an average performance that was not dependent
on any particular training and testing set. Table HI indicates that
a network can be trained to predict disulfide-bonded scenarios
81.4% correctly and non-disulfide-bonded scenarios 80.0%
correctly. It should be noted that the trained networks made
accurate predictions on sequences from both extracellular and
intracellular proteins. In fact, for the extracellular proteins

o
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Significance Filter

Fig. 2. Dependence of predictive accuracy on the strength of output node activities. The significance filter is placed over the output nodes so that only
activities greater than the filter can pass through for prediction. Data were average from the seven testing sets in Table m.
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Fig. 3. Secondary structure surrounding disulfide-bonded (a) and non-disulfide-bonded cysteines (b) used in this study. Secondary structure proportion is
calculated by summing number of individual secondary structure types and dividing by the total number of secondary structure types occurring in that window
position. Secondary structure assignments were made by the method of Kabsch and Sander (1983). H, alpha helix; G, 3 | 0 helix; I, pi helix; E, extended
strand; B, isolated /3-bridge; T, turn; S, bend; - , other.

actinidin, immunoglobulin and papain, the cysteines not involved
in disulfide bonds were correctly predicted as such. Likewise,
for the intracellular cystine-containing proteins, such as trypsin
inhibitor and superoxide dismutase, every cysteine's state was
correctly predicted.

Furthermore, if one accepts only those predictions with high
output activities, the network's performance will greatly increase.
As seen in Figure 2, predictive performance will increase while
the number of predictions made will decrease with an increasing
significance filter. The significance filter is a means of considering
only those predictions with network activities greater than the
value of the filter. Because stronger output activities result in
more accurate predictions, Figure 2 can be used to describe a
confidence level based on the magnitude of the network's output
activity.

Figure 3(a and b) shows the secondary structure proportion
as a function of window position for disulfide- and non-disulfide-
bonded cysteines. It can be seen here that the sequences
surrounding and including half-cystines seem to prefer the
extended conformation of/3-sheets over that of turns and bends,
whereas those sequences containing non-disulfide-bonded
cysteines show little, if any, secondary structure preference. The
secondary structural preferences of half-cystines perhaps enable
the high prediction rate of a cysteine's disulfide-bonding state.
It should be noted that in Figure 3(a), beyond ± 5 residues from
the central half-cystine (coinciding with the selected network
window size) the preferences for any secondary structure
disappear.

In contrast to networks containing hidden nodes, perceptron
weights can be easily interpreted. Figure 4 is a graphical depiction
of the weights averaged from the seven network experiments.
The weights from each amino acid at each window position to
the non-disulfide node (S—H) were subtracted from those
respective weights to the disulfide node (S—S) and scaled to a
shade of black. The dark squares indicate large weights (strong
SS-bonding propensity) while the light squares indicate low
weights (weak SS-bonding propensity). Note that cysteines at
positions ± 3 are not very conducive towards disulfide bond
formation. This can be explained by the frequent occurrence of
Cys —x —x —Cys in heme and metal-binding proteins.

Fig. 4. Weights averaged over the seven network experiments in Table HI.
Weights for an amino acid in a window position to the S —H output node
were subtracted from those to the S -S output node. Black shades indicate
high and white shades indicate low S-S propensity. Displayed vertically is
window positioning —5:5 (five positions to the N-terminal and five positions
to the C-terminal side of an assumed centered cysteine). Displayed
horizontally are amino acids ordered in decreasing hydrophobicity according
to Eisenberg (1984).

Conversely, cysteines at position ± 1 increase the propensity
considerably. This can be explained by the frequent occurrence
of Cys-Cys in extracellular proteins, where the cysteines can
form a basis for linking three chain segments in close proximity
(Brown, 1976). Figure 4 also shows a positive disulfide bond
propensity of closely centered /3-sheet forming residues such as
lie and Tyr.

Thornton (1981) has shown that residues linking two closely
spaced bonded half-cystines often possess positive /3-tum
potential. In Figure 4, cysteines at position ± 5 show strong to
medium disulfide bond influence as do high /3-turn potential
residues such as Asp, Asn, Ser, Pro and Gly (Wilmot and
Thornton, 1988) at positions ±4 , ± 3 , ± 2 and ± 1 . This
suggests that given cysteines at positions 0 and ± 5 separated
by residues with strong /3-turn potential, not only is the cysteine
at position 0 likely to be involved in a disulfide bond, but it is
likely to be bonded to the cysteine at ± 5 .

The contribution an individual amino acid may have towards
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Flg. 5. Weights from the seven network experiments in Table III were
averaged for each ammo acid across each window position and displayed in
bar form. Bars represent the weights to the S - H node subtracted from the
weights to the S -S node. The amino acids are ordered in decreasing
hydrophobiciry according to Eisenberg (1984).

disulfide bond formation, irrespective of window position, can
be seen in Figure 5. Here, the weights for a particular amino
acid across all window positions to the S—H node were averaged
and subtracted from those to the S -S node and depicted in bar
form. One clear pattern is that the residues contributing towards
S-S bond prediction are polar ami/or charged while those against
S—S bond prediction are primarily hydrophobia Perhaps during
the folding process, a locally hydrophilic environment helps to
maintain a cysteine more accessible, thus increasing the chances
of disulfide bond formation; whereas a locally hydrophobic
environment helps to bury a cysteine, thus decreasing the chances
of disulfide bond formation.

The most striking features in Figure 5 exist between similar
amino acids. Tyr, for example, is highly conducive towards
disulfide bond formation, yet Phe and Tip disfavor formation
quite strongly. Reid et al. (1985) discuss an electrostatic
interaction between the edge of aromatic rings and sulfur atoms.
This interaction is found to be more frequent between aromatics
and half-cystines than with aromatic and free cysteines. Figure 5
suggests that Tyr will favor disulfide bond formation over the
other aromatics simply because Phe and Tip lack hydrophilic
character. Likewise, Arg's greater polarity suggests S —S forma-
tion more strongly than does Lys. Less obvious, however, is the
strong S —S propensity of Asn relative to Gin. One explanation
is that Asn's smaller size may better enable the close approach
of a potential half-cystine. Consistent with this, the S-S pro-
pensity of Gly, Asp and Ser exceeds that of their slightly larger
counterparts Ala, Glu and Thr respectively. These differences
in S - S propensity between otherwise very similar amino acids
(Dayhoff, 1972) may make feasible the stabilization and/or
destabilization of disulfide bonds through the site-directed
mutagenesis of sequences surrounding half-cystines.

For proteins containing a single disulfide bond with more than
two cysteines, it would be of great use to know which two
cysteines are disulfide bonded. In such proteins, an accurate
prediction of each cysteine's disulfide-bonding state would
produce a correct partner assignment. In the cases of cytochrome
c5 (1CC5: 2 S-S state; 2 S -H state), superoxide dismutase
(2SOD: 2 S-S state; 1 S -H state) and mengo-encephalo-
myocarditis virus coat protein (1MEV: 2 S -S state; 8 S -H
state), the weights averaged from the seven independent network

experiments correctly predict the half-cystines as S—S and the
free thiols as S—H, thus making accurate disulfide bond
assignments. However, for azurin (2AZA: 2 S - S state; 1 S—H
state) and glutathione reductase (3GRS: 2 S - S state; 7 S - H
state), only one of the two half-cystines was correctly predicted
for both.

Similarly, for proteins containing a single free thiol amidst
disulfide bonds, the identification of the free sulfhydryl would
be quite useful. For actinidin (2ACT: 6 S-S state; 1 S-H state),
papain (6PAD: 6 S -S state; 1 S -H state) and lambda
immunoglobulin Fab (3FAB: 10 S-S state; 1 S - H state), the
bonding states of all cysteines are correctly predicted, thus
identifying the free sulfhydryl. However, for proteinase k (2PRK:
4 S-S state; 1 S—H state), beside the correct S—H prediction,
one other cysteine had an incorrect high S -H prediction, thus
making no identification possible.

A few successful attempts at assigning half-cystines to their
partners were made by choosing those pairs with the most similar
network activities and the smallest residue separation. These
successes [alpha-lytic protease (2ALP: 6 S - S state; 0 S - H
state), aspartic proteinase (3APR: 4 S-S state; 0 S -H state)
and actinoxanthin (1ACX: 4 S-S state; 0 S -H state)], however,
are proteins with half-cystine pairs not enclosing other half-
cystines.

Conclusion
The results from the neural network analysis provide a convenient
means of predicting possible sites for disulfide bond formation
based only on amino acid sequence. Cysteines with high as well
as those with low disulfide bond propensity can be predicted with
a very high confidence level. Successful prediction of each
cysteine's disulfide-bonding state in some cases can lead to
immediate disulfide partner assignment and represents the most
important step towards eventual assignment of all disulfide pairs.
Such assignments would provide key distance constraints for
predicting the tertiary structure of cyst(e)ine containing proteins.

Our method can be of practical utility in protein engineering.
Amino acid sequences can be searched for residues which appear
to be good candidates for mutation into cysteine, whose flanking
sequence suggests a high likelihood of forming a disulfide bridge.
Likewise, sequences surrounding a cysteine can be altered to
change the propensity that cysteine has for disulfide bond
formation. In this way, when combined with other structural
information, one can design sequences to either increase or
decrease the likelihood of S -S formation.

We plan to increase the size of the database by including those
proteins with disulfide bond information in the Protein
Information Resource (George et al., 1986) because the crystal
structures in the Protein Data Bank are only a small subset of
naturally occurring proteins. By increasing the present database,
more sequence space would be represented, thereby allowing the
neural net to extract those features that are at present only weakly
suggested. Further experiments will consider cysteine content,
cysteine spacing, protein size and protein family with the goal
of improving the prediction accuracy.

Acknowledgements
The authors are grateful to Marge Hutchinson for her assistance and advice,
Fan Jiang for his graphics program and Mike Milburn for useful discussions.
We acknowledge the support of the Health Effects Research Division, Health
and Environmental Research, Office of Energy Research of the US Department
of Energy. One of the authors (S.M.M.) was supported by a University of
California Reagents fellowship.

671

 at Penn State U
niversity (Paterno L

ib) on M
arch 5, 2016

http://peds.oxfordjournals.org/
D

ow
nloaded from

 

http://peds.oxfordjournals.org/


S.M.Muska], S.R.Holbrook and S.-H.Kim

References
Bernstein.F.C, Koetzle.T.F., Williams.G.J.B., Meyer,E.F.,Jr, Brice,M.D.,

RodgersJ.R., Kennard,O., Shimanouchi.T. and Tasumi.M. (1977) 7. Mol.
BioL, 112, 535-542.

Bohr,H., Bohr.J., Brunak.S., Cotteri]l,R., Lautrup.B., Norskov.L., Olsen.O.H.
and Petersen.S.B. (1988) FEBS Lett., 241, 223-228.

Brown JR. (1976) Fed. Proc., 35, 2141-2144.
Creighton,T. (1984) Proteins: Structures and Molecular Properties. W.H.Freeman,

New York.
Dayhoff.M.O. (1972) Atlas of Protein Sequence and Structure. The National

Biomedical Research Foundation, Maryland, Vol. 5.
Eisenberg,D. (1984) Annu. Rev. Biochem., 53, 595-623.
Fahey.R.C, HunU.S. and Windham.G.C. (1977)7. MolEvol., 10, 155-160.
George.D.G., Barker.W.C. and Hunt,L.T. (\9S6) Nudeic Acids Res., U, 11-15.
Holbrook.S.R., Muskal.S.M. and Kim,S.-H. (1990) Protein Engng.,3, 659-665.
Holley.H.L. and Karplus.M. (1989) Proc. Natl. Acad. Sci. USA, 86, 152-156.
Kabsch.W. and Sander.C. (1983) Biopolymers, 22, 2577-2637.
Lippmann.R. (1987) IEEE ASS?. April, 4 -22 .
Matthews.B.W. (1975) Biochim. Biophys. Acta, 405, 442-451.
McGregor.M.J., Flores.P.T. and Stemberg.M.J. (1989) Protein Engng, 2,

521-526.
Qian,N. and Sejnowski.T.J. (1988) J. Mol. Biol., 202, 865-884.
Reid,K.S.C, Lincfley.P.F. and ThomtonJ.M. (1985) FEBS Lett., 190,209-213.
Rumelhart.D.E., Hinton.G.E. and Williams.R.J. (1986a) Parallel Distributed

Processing: Explorations in the Microstructure of Cognition. MIT Press,
Cambridge, MA, Vol. 1.

Rumelhart,D.E., Himon.G.E. and Williams.R.J. (1986b) Nature, 323, 533-536.
Schulz.G.E. and Schirmer.R.H. (1984) Principles of Protein Structure. Springer

Verlag, New York.
Thomton,J.M. (1981)7. Mol. Biol., 151, 261-287.
Wiimot.C.M. and Thornton.J.M. (1988) 7. Mol. Biol., 203, 221-232.

Received on October 17, 1989; accepted on March 23, 1990

672

 at Penn State U
niversity (Paterno L

ib) on M
arch 5, 2016

http://peds.oxfordjournals.org/
D

ow
nloaded from

 

http://peds.oxfordjournals.org/

