Kinome-wide Activity Models from Diverse High-Quality Datasets

Stephan C. Schürer^{*,1} and Steven M. Muskal²

¹Department of Molecular and Cellular Pharmacology, Miller School of Medicine and Center for Computational Science, University of Miami, Miami, FL 33136, USA.

²Eidogen-Sertanty, Inc. 3460 Marron Rd #103-475, Oceanside, CA 92056, USA.

Steven Muskal Eidogen-Sertanty, Inc <u>smuskal@eidogen-sertanty.com</u>

FDA Approved Protein Kinase Inhibitors

Journal of Medicinal Chemistry

Table 1. FDA Approved Protein Kinase Inhibitors (as of March 2012)

generic (brand) name	year of approval	company	indication	target kinase
imatinib (Gleevec)	2001	Novartis	chronic myeloid leukemia (CML)	Abl, c-Kit, PDGFR α/β
gefitinib (Iressa)	2003	AstraZeneca	non-small-cell lung carcinoma (NSCLC)	EGFR
erlotinib (Tarceva)	2004	Genetech, OSI	NSCLC, pancreatic cancer	EGFR
sorafenib (Nexavar)	2005	Bayer, Onyx	hepatocellular carcinoma, renal cell carcinoma (RCC)	Raf, VEGFR2/3, c-Kit, PDGFR β
sunitinib (Sutent)	2006	Pfizer	gastrointestinal stromal tumor (GIST), RCC	c-Kit, VEGFR, PDGFR, FLT3
dasatinib (Sprycel)	2006	Bristol-Myers Squibb	CML	Abl, c-Kit, PDGFR, Src
nilotinib (Tasigna)	2007	Novartis	CML	Abl, c-Kit, PDGFR, Src, ephrin
lapatinib (Tykerb)	2007	GlaxoSmithKline	breast cancer	EGFR, ErbB2
pazopanib (Votrient)	2009	GlaxoSmithKline	RCC	VEGFR, PDGFR α/β , c-Kit
vandetanib (Caprelsa)	2011	AstraZeneca	thyroid cancer	VEGFR, EGFR, RET
vemurafinib (Zelboraf)	2011	Roche, Plexxicon	CML	Abl, c-Kit, PDGFR, Src, ephrin
crizotinib (Xalkori)	2011	Pfizer	NSCLC (ALK +ve)	ALK, MET
ruxolitinib (Jakafi)	2011	Incyte	myelofibrosis	JAK1/2
axitinib (Inlyta)	2012	Pfizer	RCC	VEGFR, PDGFR β , c-Kit

Reference: dx.doi.org/10.1021/jm3003203 I J. Med. Chem. 2012, 55, 6243-6262

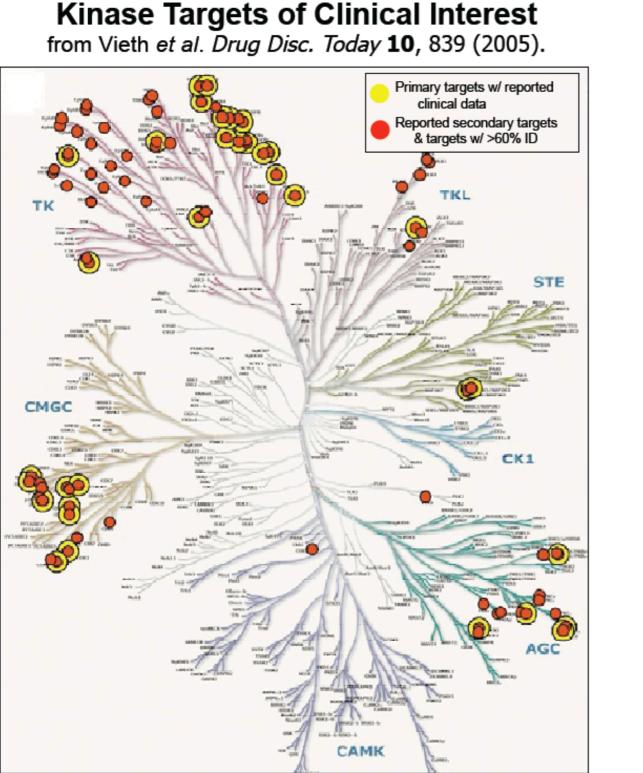
Perspective

Outline

Kinase Data (KKB)

- Regression Models
 - Conclusions
- Naïve Bayesian Classifier Models
 - Conclusions

Kinase Knowledgebase (Q2 2012) - "Hot Targets"



Eidogen-Sertanty KKB SAR Data Point Distribution Kinases with Biological Activity Data in Kinase Knowledgebase Q2 2012 Release Human Kinome Tree View # Data Points > 20,000 > 500 > 10.000 > 250 > 2,500 > 100 > 1,000 •<100 TKL STE CMG CK1 PIK3C/ FRAPIMTOR AGC **PIK3CO** PIK3CC PIK3CE DNAPK CAMK ATM SPHK ATR Eidogen Sertanty Kinome Tree image courtesy

> 649,000 SAR data points curated from > 7915 journal articles and patents

Kinase Knowledgebase (KKB) - Q2 2012

Kinase inhibitor structures and SAR data mined from

> 7915 journal articles/patents

KKB Content Summary (Q2 2012):

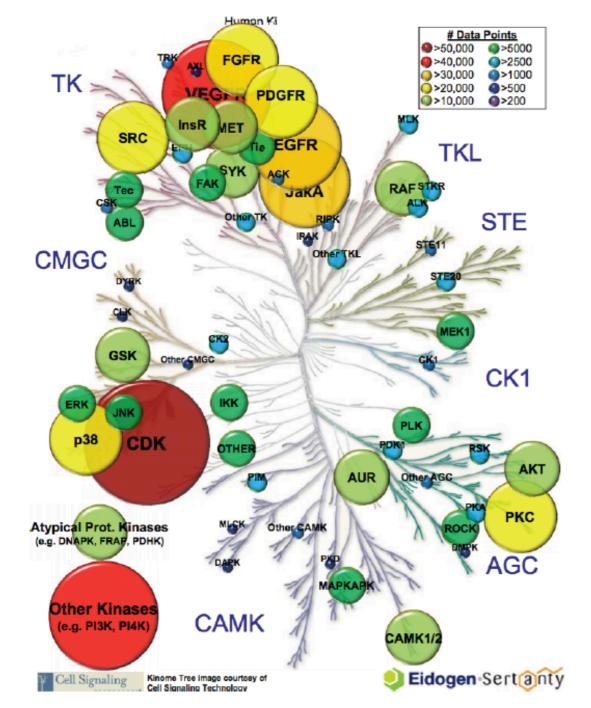
of kinase targets: > 480
of SAR Data points: > 649,000
of unique kinase molecules with SAR data: >241,000
of annotated assay protocols: >25,472
of all kinase inhibitors (with or without bio-activity data): > 586,000

KKB Growth Rate:

- Average 15-20K SAR data points added per quarter
- Average 20-30K unique structures added per quarter

Kinase Summary Statistics - Q2 2012

Articles covered:	2,307	(+ 30)
Patents and patent applications covered:	5,608	(+ 93)
Total Number of Bio-activity data points:	649,384	(+ 31,602)
Total Number of unique molecules:	586,610	(+ 8601)
Total Number of unique molecules w/ assay data:	241,680	(+ 8601)
Total Number of assay protocols:	25,472	(+ 322)



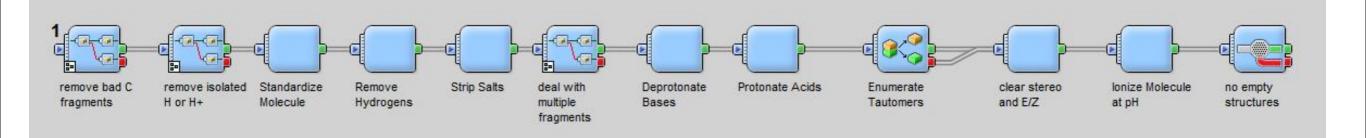
Targets with largest increase in Data Points in Q2-12				
Target	# Data Points added			
FGFR3	4626			
KDR	4482			
FGFR1	4446			
FLT3	3047			
TTK	1634			
FGFR2	1428			
FGFR4	1364			
PIK3CA	1254			
PIK3CD	955			
JAK3	920			
MTOR	827			
JAK2	533			
PTK2	463			
RPS6KB1	425			
JAK1	387			
ALK	361			
AKT1	357			
ROCK2	335			
SYK	305			
BRAF	268			
GSK3B	251			
LRRK2	219			
EGFR	211			
BTK	197			
TYK2	188			
IRAK4	178			
PIK3CB	158			
PIK3CG	147			
PIM1	147			
IKBKB	130			
CDK2	117			
MAPK1	108			
ERBB2	94			
CSF1R	73			
MET	72			
TGFBR1	68			
PLK1	55			
PIM3	54			
CDK9	52			

Kinase Data Used in this Study - Q4 2009 [Q2 2012]

- Biological Activity Data Points: > 437,000 [> 649K]
- Unique kinase molecules w/assay data: >162,000 [> 241K]
- Unique kinase molecules patents/articles: > 507,000 [> 586K]
- Number of unique kinase targets with assay data: 394 [480]
- Number of annotated assay protocols: 20,593 [25,472]

Data Pre-Processing

- Starting point: KKB-Q2 2009
- Only enzymatic (homogeneous) assays with defined target
- Only high quality data (IC50, Ki, Kd)
- Standardized chemical structures (salt forms, stereochemistry, E/Z geometry, tautomers, ionization)
- Kinase target Entrez Gene names and SwissProt accessions
- 233,667 unique data points (411 kinases)
- 126,114 unique chemical structures



KinomeScan Data (Experimental Validation Data)

- NIH HMS LINCS DataBase (Harvard Medical School LINCS center) <u>http://lincs.hms.harvard.edu/resources/software/hms-lincs-database/</u>
 - The LINCS program develops a library of molecular signatures based on gene expression and other cellular changes in response to perturbing agents across a variety of cell types using various high-throughput screening approaches
- 25,064 total datapoints downloaded:
 - 60 unique compounds (43 with defined/known chemical structure) against 486 targets
 - \bullet Kinase activity screened at 10 μM concentration
 - Targets mapped to KKB targets by UniProt accessions
 - Data not in KKB
- Result: 4,796 datapoints from 43 compounds

Outline

- Kinase Data (KKB)
- Regression Models
 - Conclusions
- Naïve Bayesian Classifier Models
 - Conclusions

Quantitative Regression Models

- K nearest neighbors (kNN) [20 nn, Gaussian weighting 0.5]
- Partial least squares (PLS) [components restricted to 20]
- Works best with congeneric series
- Sensitive to outliers and noise
- 168 kinase datasets have ≥ 20 Dps
- PipelinePilot ECFP4 (circular) fingerprints as descriptors
- Full 10 fold cross validation for both PLS and kNN (20 repetitions), report R², q², RMSE

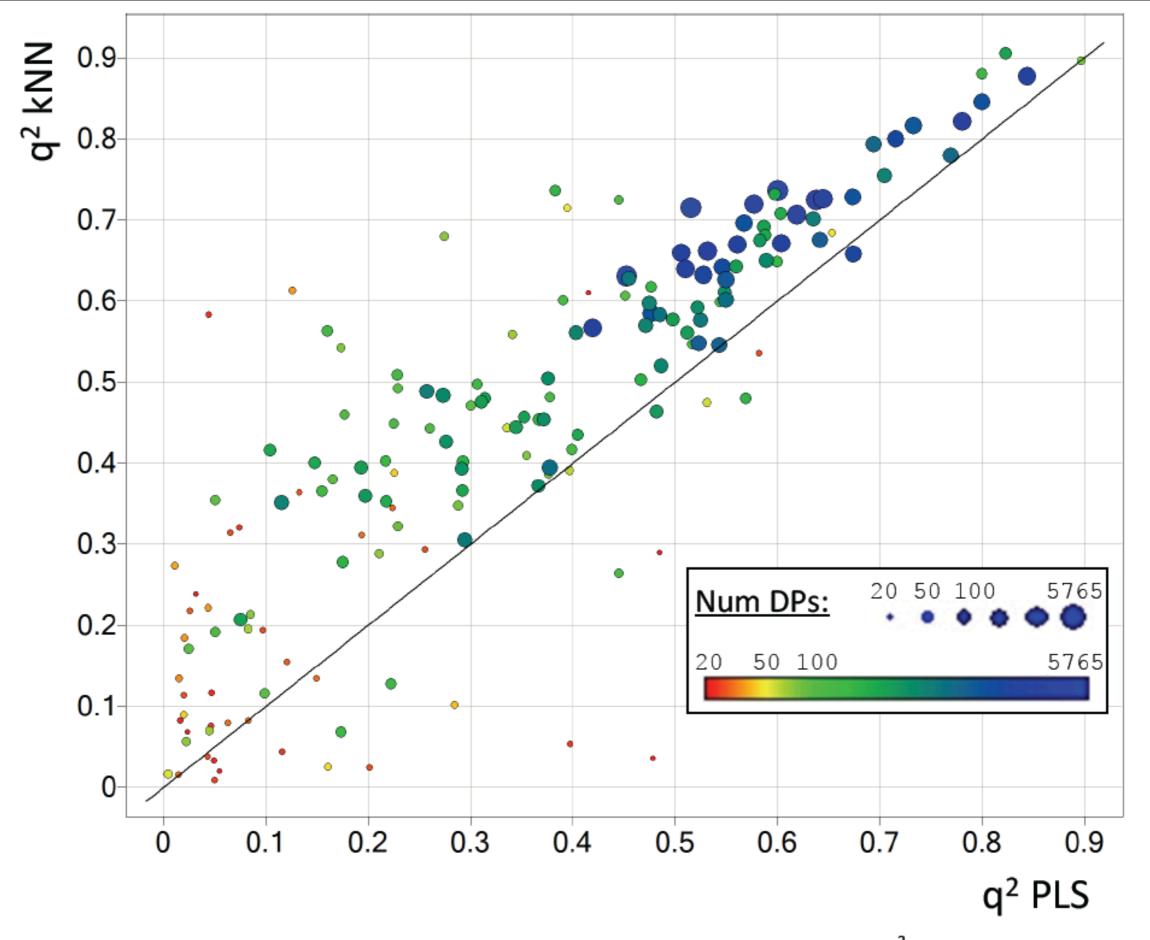


Figure 5. Quantitative regression models developed from 168 kinase datasets. q² values of kNN vs. PLS regression models and the number of kinase activity data points indicated by the circle size and color

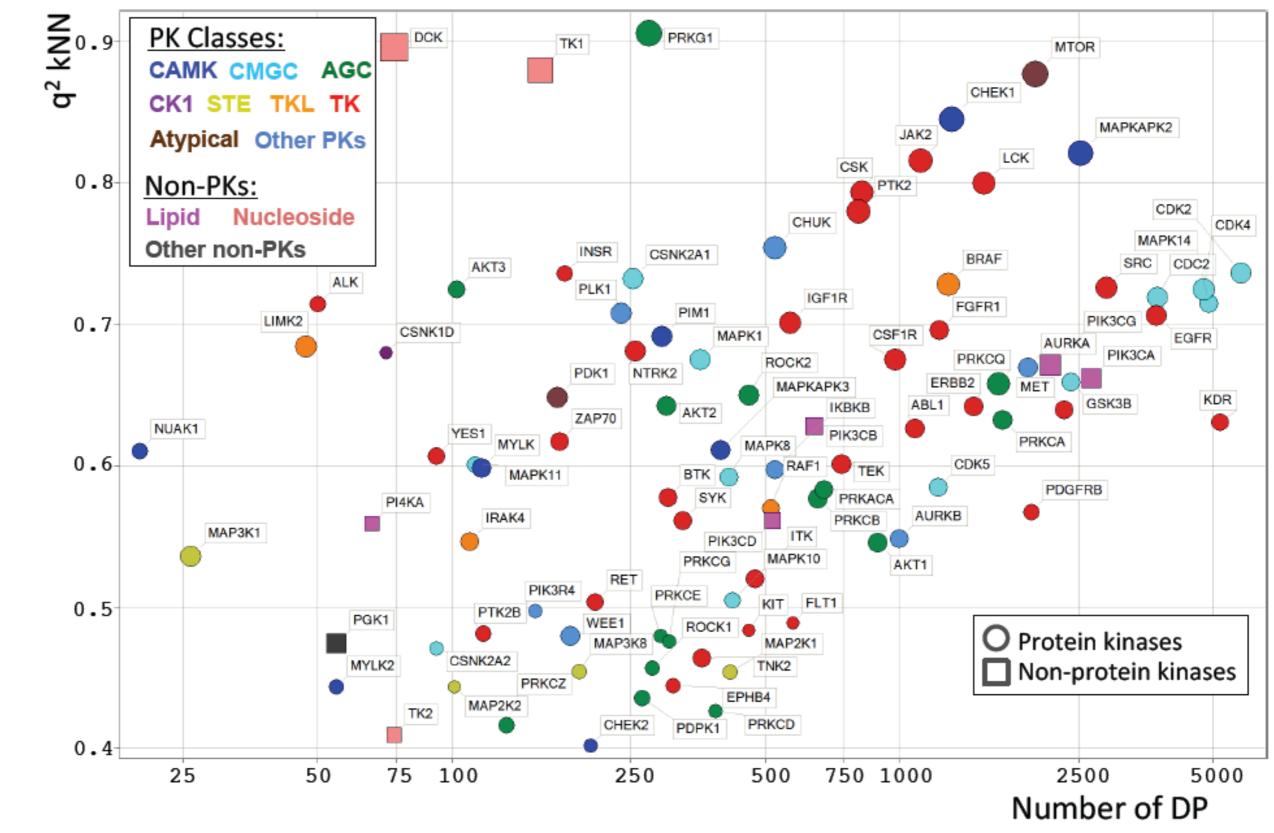
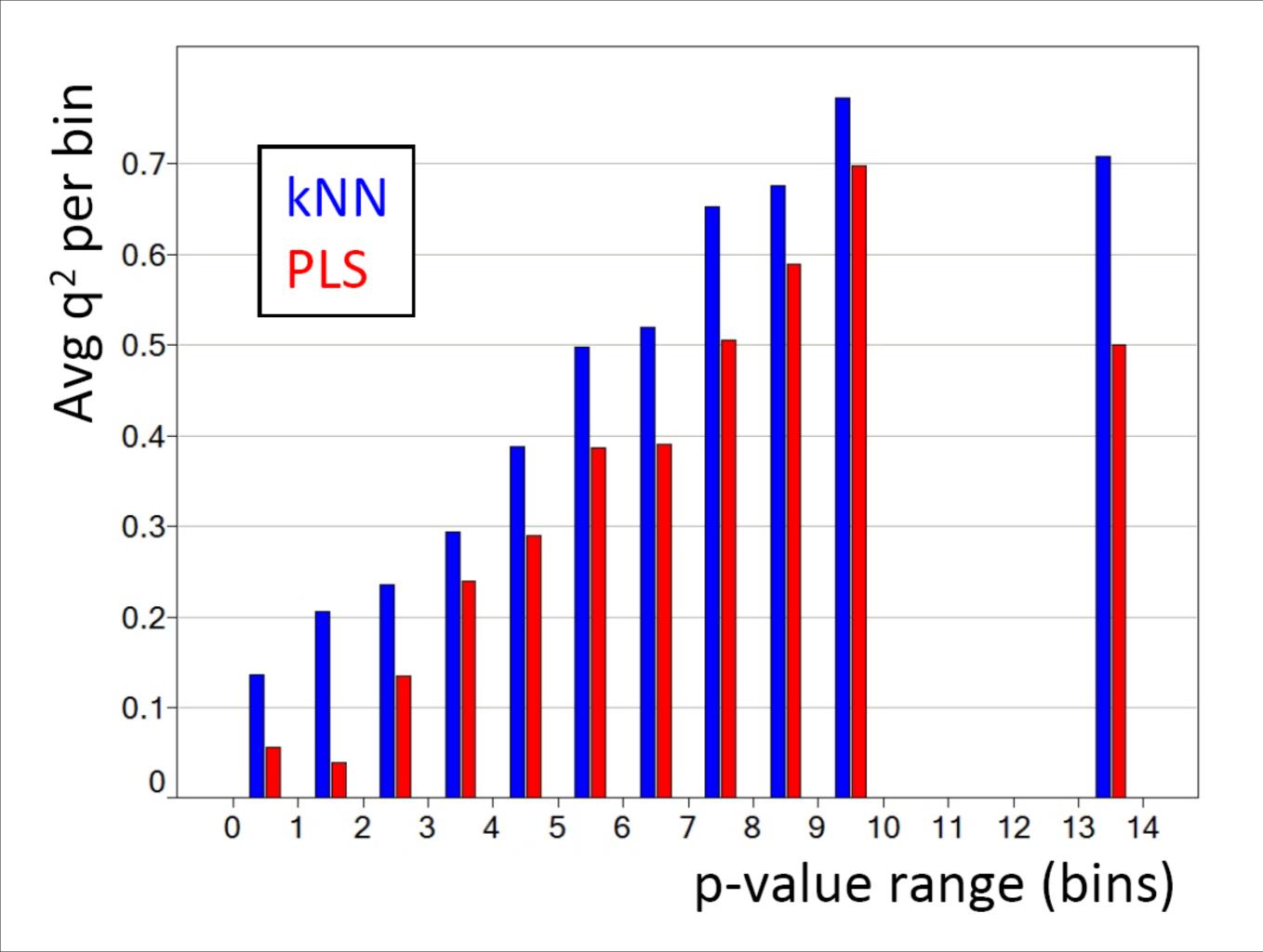


Figure 7. kNN and PLS activity predictors for 91 kinases (q^2 kNN > 0.4 and q^2 PLS > 0.25) by the number of data points; datasets include protein and non-protein kinases and all major kinase groups. kNN q^2 is shown by number of (unique) structure-data points. Symbol indicates protein vs. non-protein kinase, size is scaled by PLS q^2 , colored by kinase group, and annotated by HUGO kinase gene symbol.



Conclusions - Regression Models

- Work well for many kinase data sets
- kNN performs slightly better than PLS
- Larger numbers of data points improve both PLS and kNN models
- Best results for kinases with \geq 50 data points
- Regression models improve with increased activity range

Outline

- Kinase Data (KKB)
- Regression Models
 - Conclusions

Naïve Bayesian Classifier Models

Conclusions

Laplacien-modified Naïve Bayesian Classifiers

- Scale linearly, work in high-dimensional spaces (no overfitting), good for structurally diverse cmpds, multiple activity classes, robust to outliers
- Define data sets by unique kinase gene IDs with active compounds defined as pIC50 ≥ 6
- 189 kinase data sets with at least 10 active molecules
- Data were treated in two ways:
 - Known Active Known Inactive (KA-KI)
 - Presumed Inactive (PI): 126,114 unique chemical structures - N_{inact}
- ECFP4 (circular) fingerprints
- Leave-one-out cross-validation and repetitive train/test evaluation measuring ROC and enrichment factors

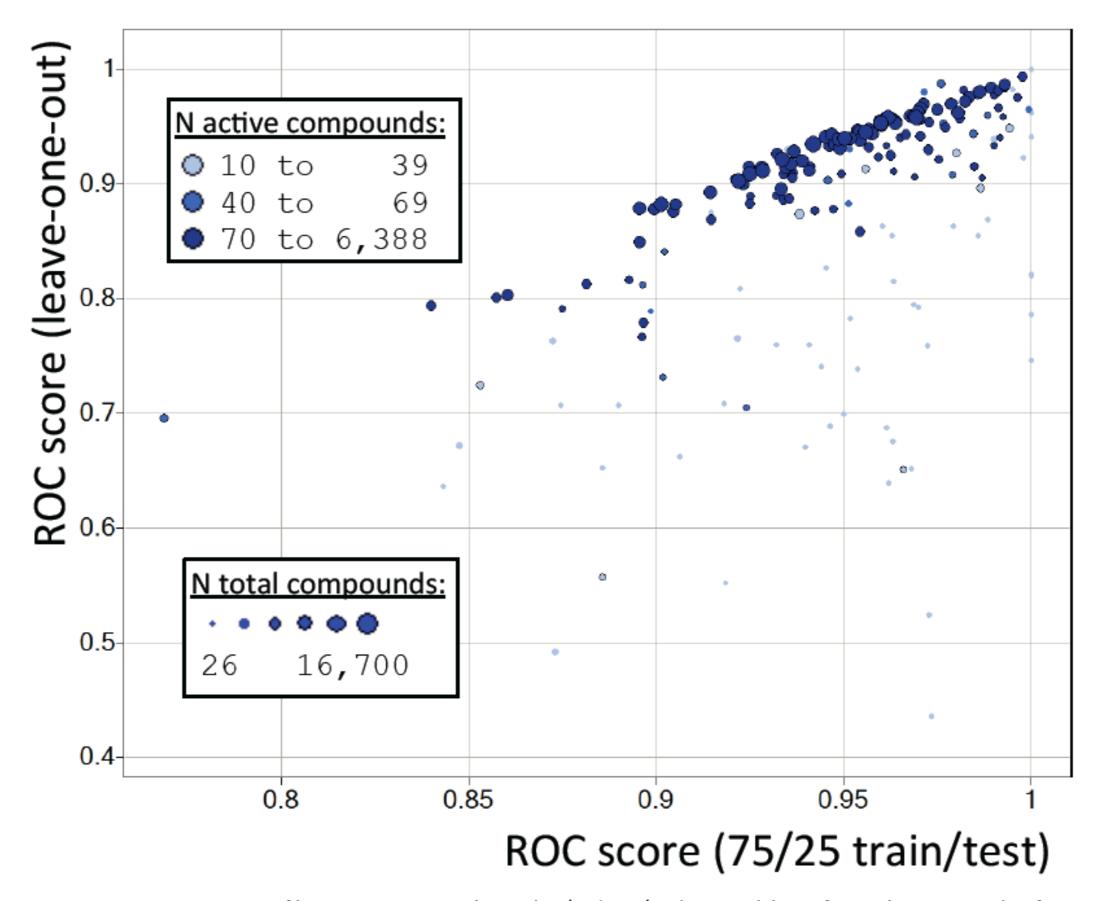
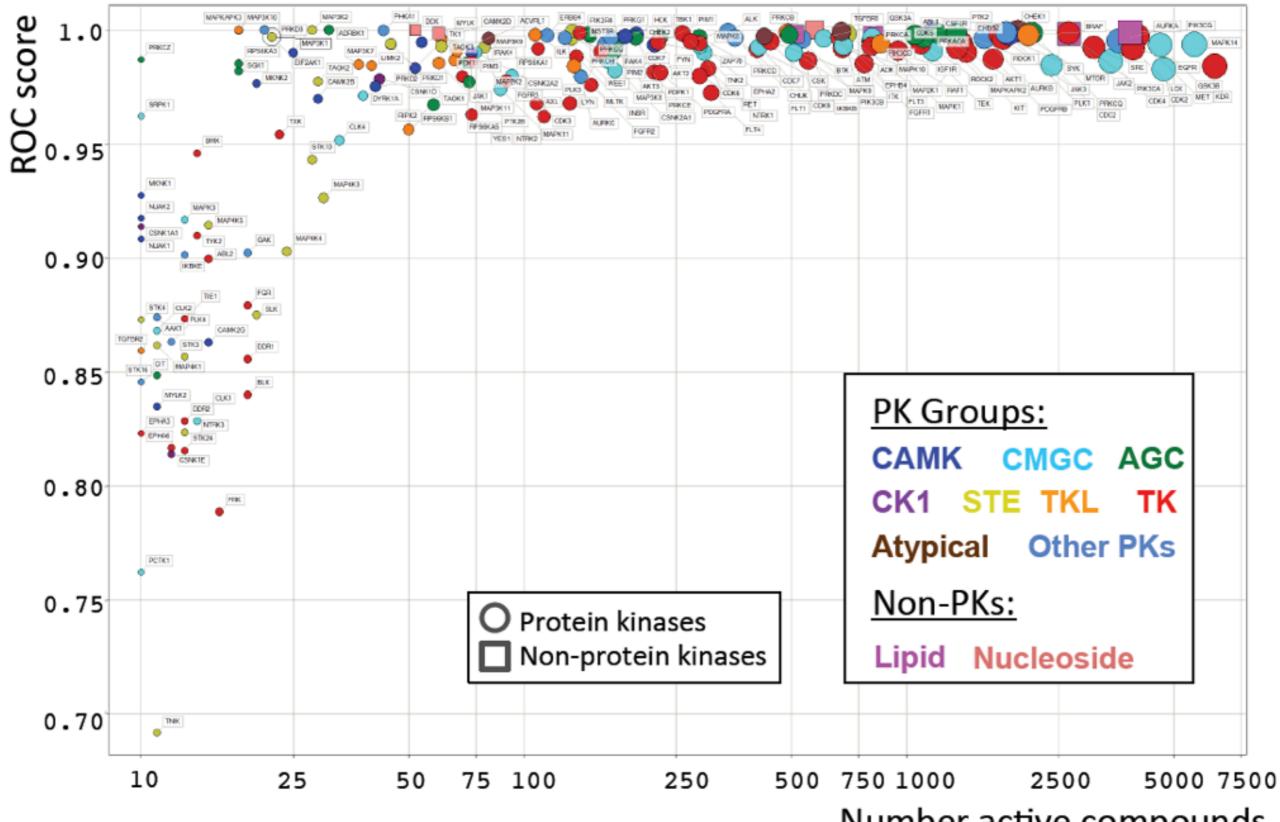


Figure S1. ROC score of leave-one-out vs. randomized 75/25 (train/test) cross validation for 187 kinase KA-KI classifiers with at least 10 active samples. Dot size is scaled by the number of total compounds in each dataset and colored by the number of actives. 129 classifiers are shown that correspond to datasets with at least 40 actives and 111 with at least 70 actives. ROC scores for randomized 75/25 training/test validations are averages of 10 repetitions. Compare table S1.



Number active compounds

Figure S2. Characterization of all 189 kinase KA-PI protein and non-protein kinase classifiers, including all major protein kinase groups. ROC scores are shown as a function of active samples. Shape by protein vs. non-protein kinase, color-coded by kinase group, scaled by number of active data points, annotated by HUGO kinase gene symbol. ROC scores increase significantly for classifiers based on datasets with more than 25 active compounds.

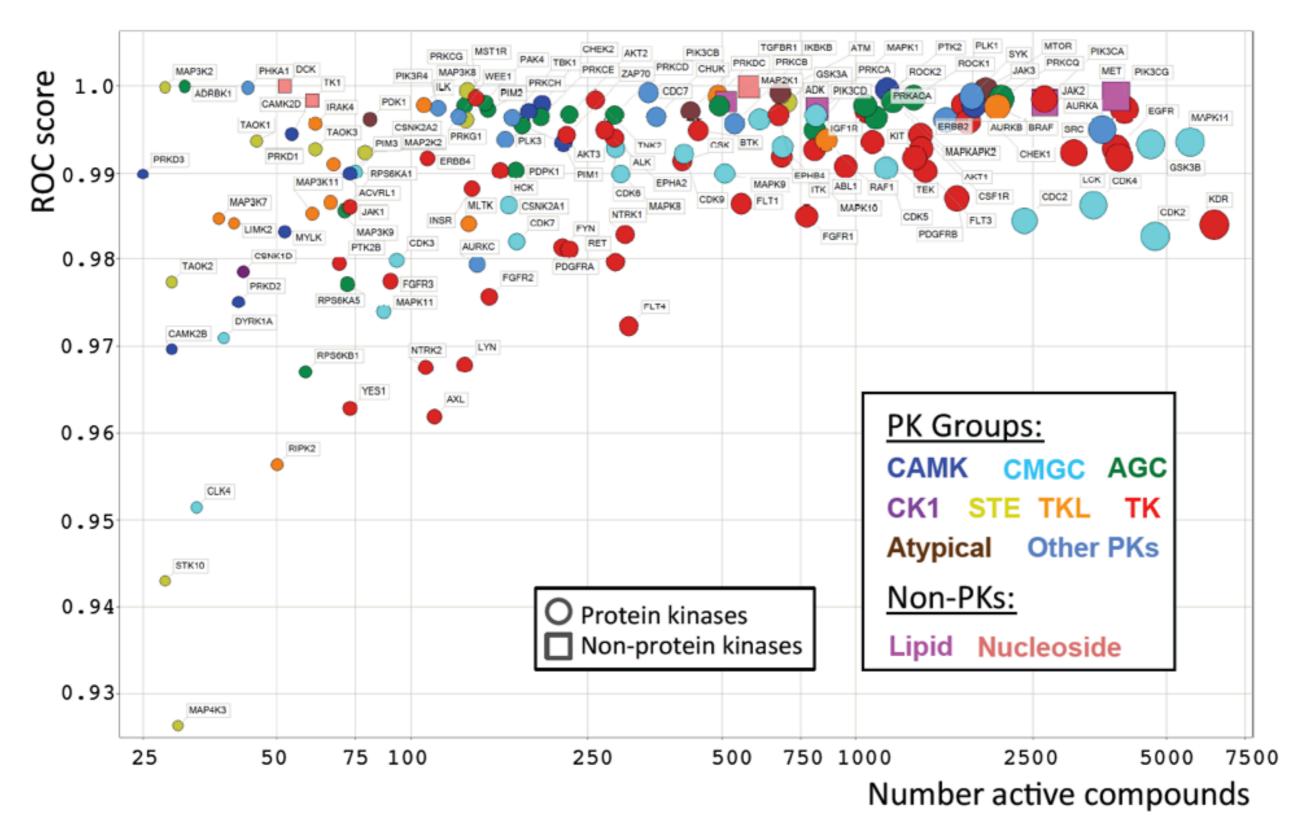


Figure 1. Characterization of 141 kinase KA-PI protein and non-protein kinase classifiers, including all major protein kinase groups. ROC scores are shown as a function of active samples. Shape by protein vs. non-protein kinase, color-coded by kinase group, scaled by number of active data points, annotated by HUGO kinase gene symbol.

* At least 25 actives

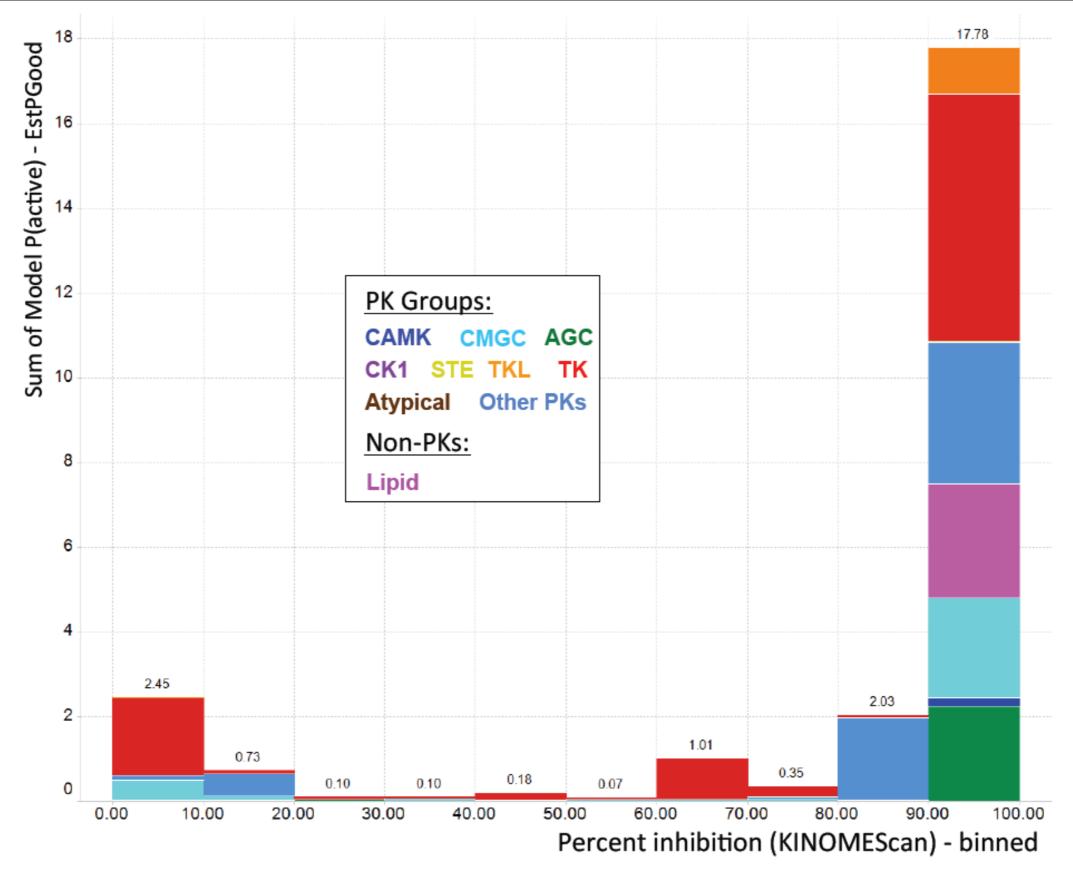


Figure 9. Aggregated predicted probabilities (EstPGood) of compounds being against kinases (based on the KA-PI classifiers) as a function of the actual KINOMEScan percent inhibition ranges; by category of kinase group and protein vs. non-protein kinase; 4,796 activity data points for 43 compounds mapped to KA-PI models (not all compounds tested against the same number of targets).

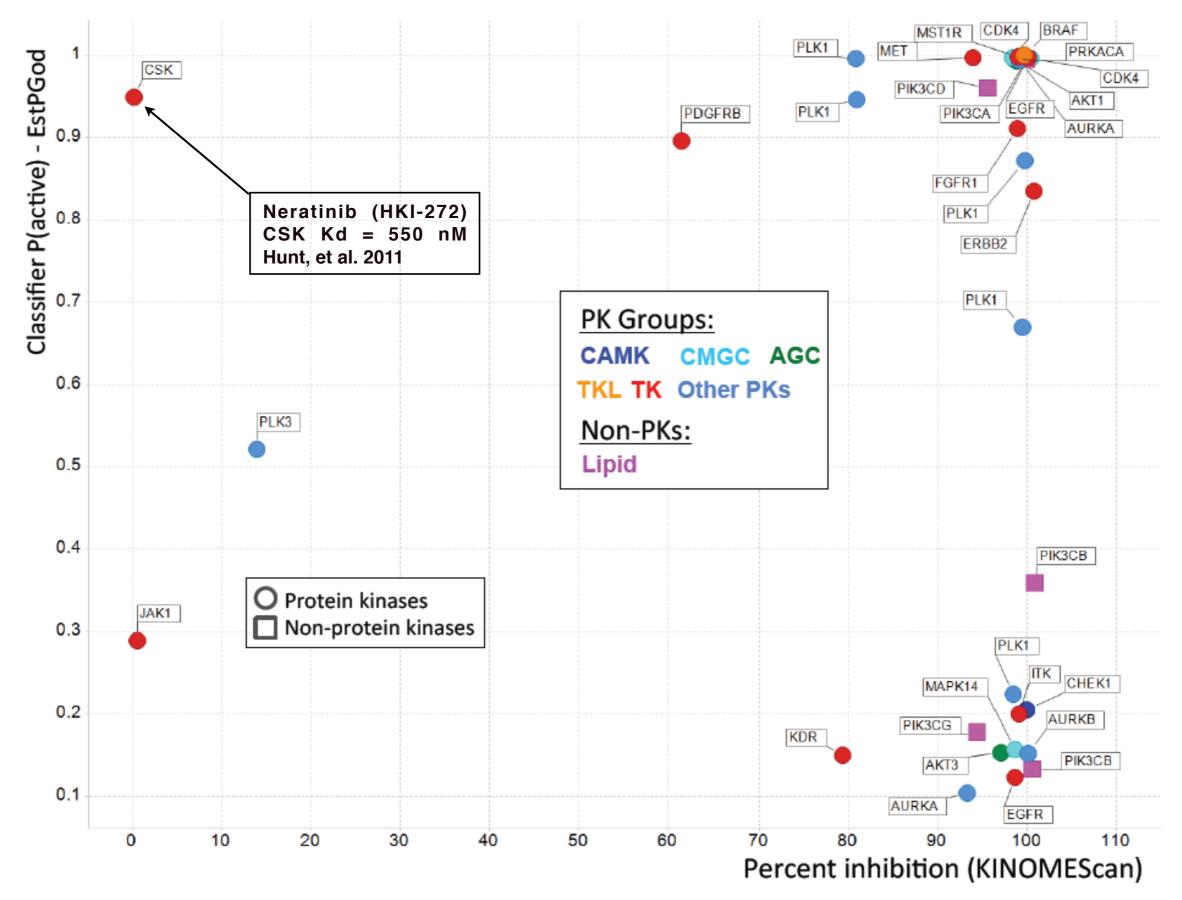
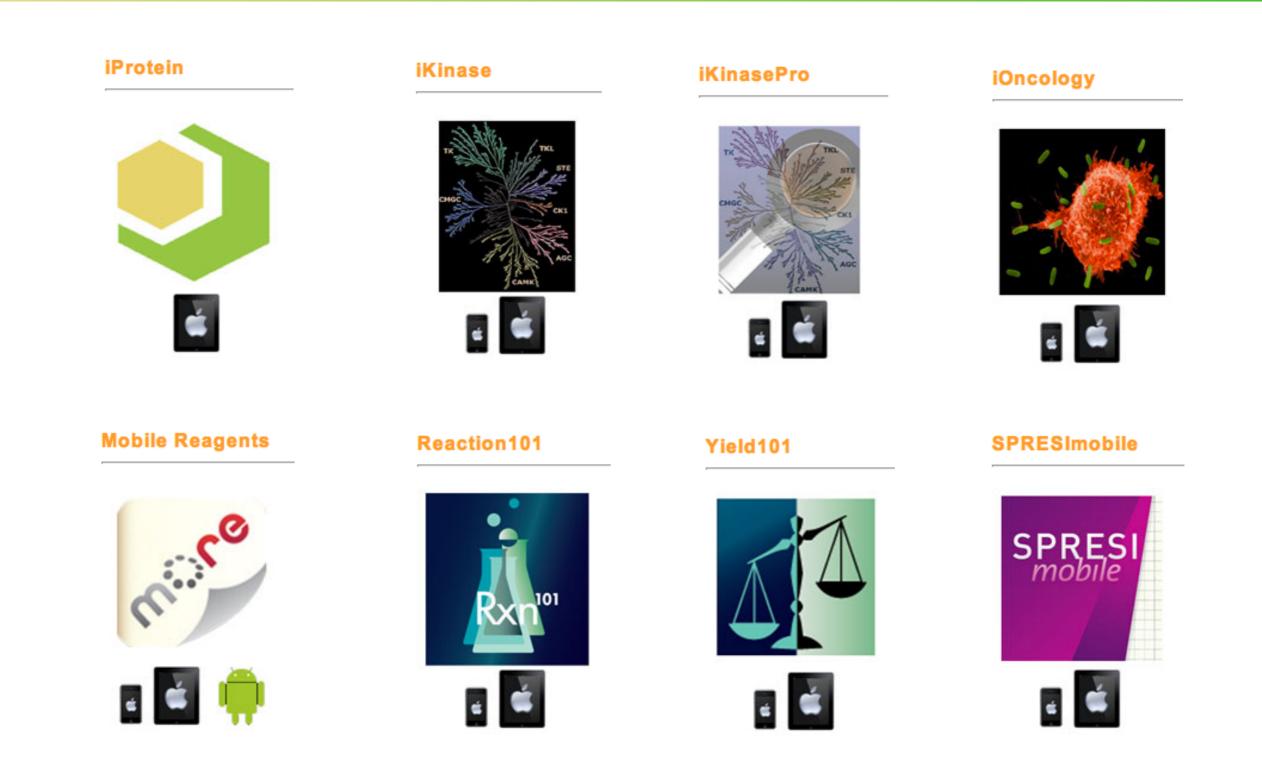


Figure 8. Probability (EstPGood) of compounds being active against a kinase based on KA-PI kinase classifiers and actual KINOMEScan percent inhibition values (at 10 μ M); compare supporting table S6. Kinase classified by groups and protein vs. non-protein kinases.

Conclusions - Classification Models

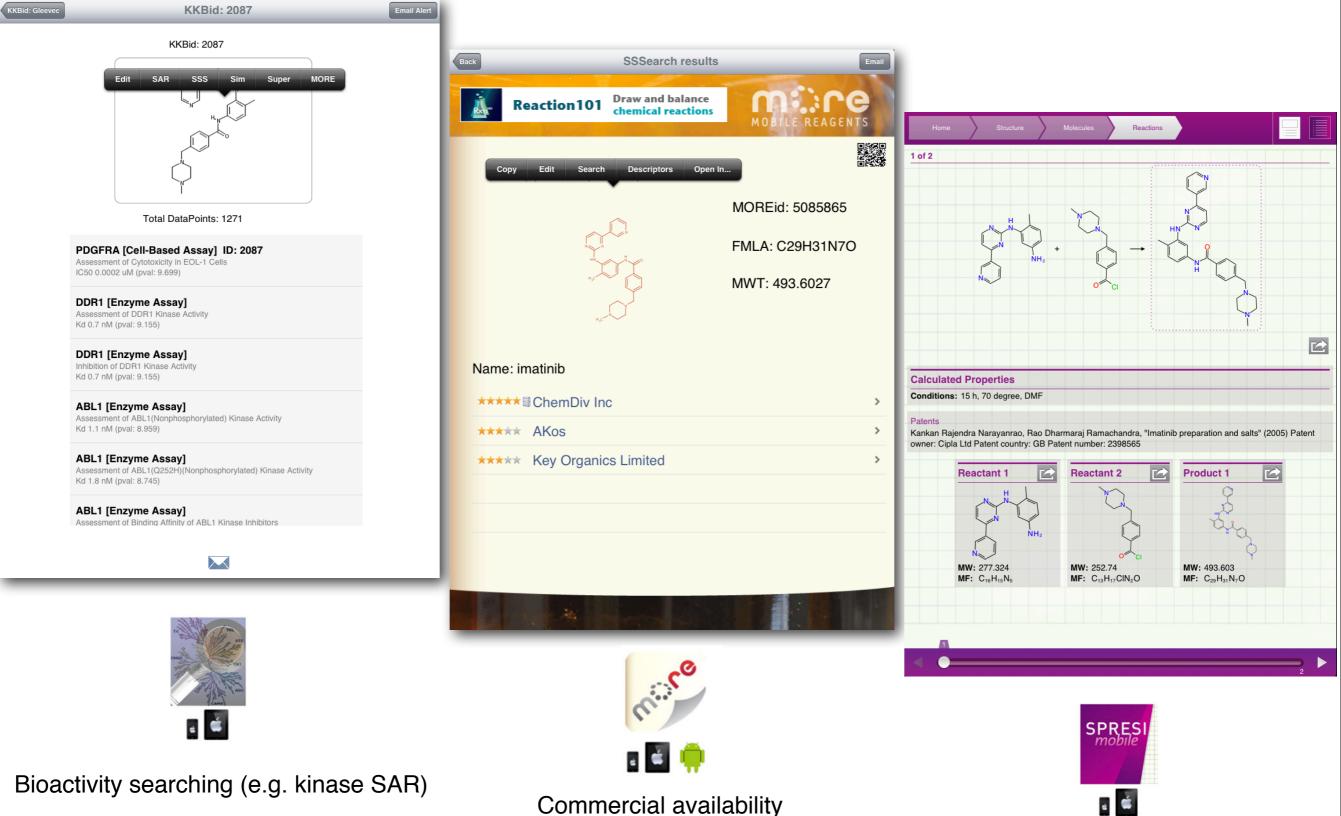
- Work very well for known actives known inactives (KA-KI)
- Relevant and applicable for real world, highly unbalanced data sets (KA-PI)
- Leave-one-out ROC is a good guide of model quality
- Naïve Bayesian classification is excellent for the majority of kinases (>140)
- Performance increases markedly with ≥ 50 active compounds
- Very useful for virtual screening and rapid profiling

Eidogen's iPhone, iPad, and Android Apps



See: eidogen.com, kinasedb.com or kinasedata.com

MobileApps Support Real Scientific Workflows



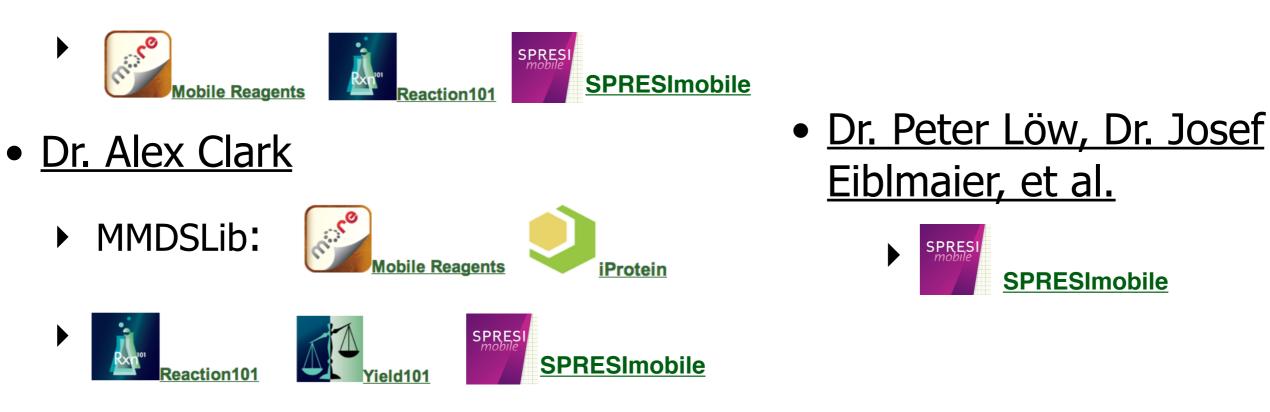
Synthesis planning

Acknowledgements

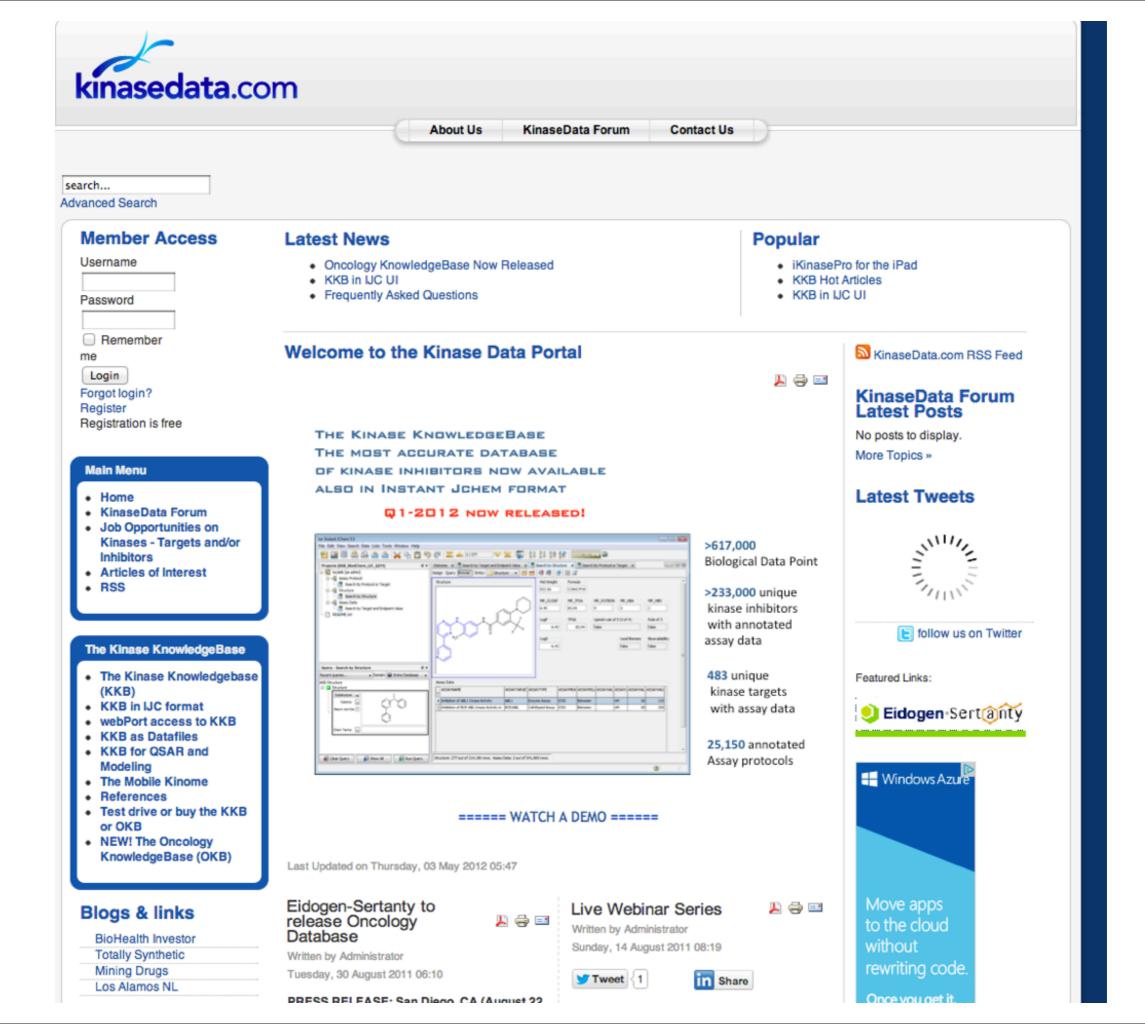
• Dr. Rajan Sharma and Prof. Stephan Schurer



• <u>Dr. Maurizio Bronzetti</u>



• Dr. Tony Yuan



Naïve Bayesian with Laplacien Correction

Naïve Bayes (features are conditionally independent):

$$P(C | F_1, \dots, F_n) = k \prod_{i=1}^n \frac{P(C | F_i)}{P(C)} \qquad P(C) = \frac{A}{T} \qquad \begin{array}{l} \text{A: Number of active samples} \\ \text{T: Total number of sample} \\ \text{A}_{\text{Fi}}: \text{Active sample with feature Fi} \\ \text{A}_{\text{Fi}}: \text{Active sample with feature Fi} \\ \text{T: Total sample with feature Fi} \end{array}$$

Adding virtual samples for each feature:

$$P_{corr}(C \mid F_i) = \frac{A_{Fi} + P(C)K}{T_{Fi} + K}$$

1.1

Estimating active virtual samples using baseline probability

Sample frequency 1/P(C) or T/A (Laplacien correction):

$$P_{final}\left(C \mid F_{i}\right) = \frac{A_{Fi} + 1}{T_{Fi} + T_{A}}$$

Pipeline Pilot implementation:

$$\log(P(C \mid F_1, \dots, F_n)) = K + \sum_{i=1}^n \log(P_{final}(C \mid F_i))$$

Classification Model Evaluation

Receiver operating characteristic:

$$ROC = \frac{S}{1 - SP}$$

Sensitivity (true positive rate):

$$S = \frac{TP}{N_{act}}$$

Specificity (true negative rate):

$$SP = \frac{TN}{N_{inact}}$$

Enrichment: EF

$$\mathbf{f} = \frac{\overline{TP + FP}}{\frac{N_{act}}{N}}$$

TP

Report enrichment at 0.1 % 0.5 %, 1%, etc.

MobileApps: Worldwide Marketing Vehicles!

~ 30,000 People Use Eidogen Mobile Apps